Patents by Inventor Fumio Shimizu

Fumio Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11168958
    Abstract: A sighting scope 1 includes; a scope body 2; an outer frame 3 covering at least a middle portion along an optical axis of the scope body; a rotational support structure which rotatably support the scope body 2 around a rotational axis located on a plane orthogonal to the optical axis in the outer frame; a rotational sliding contact portion which is placed between the scope body and one of opening edges at ends of the outer frame located on front and back sides of the rotational axis along the optical axis, and which is designed to be able to slide around the rotational axis; and an angular adjustment mechanism which can adjust an inclined angle of the scope body with respect to the outer frame.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: November 9, 2021
    Assignee: DEON OPTICAL DESIGN CORPORATION
    Inventor: Fumio Shimizu
  • Patent number: 11047062
    Abstract: [Technical Problem] An object is to provide a heat insulation coat having a novel form/structure different from conventional ones. [Solution to Problem] The present invention provides a heat insulation coat having a spongy body that is composed of non-linear pores and a skeleton incorporating the pores. The skeleton is an amorphous body comprising Al, Si, O, and impurities and has an amorphous peak specified by X-ray diffraction analysis at a position of 3.5 ? or more as the lattice spacing. The heat insulation coat has an apparent density of 1 g/cm3 or less, a volumetric specific heat of 1,000 kJ/m3·K or less, and a thermal conductivity of 2 W/m·K or less. The spongy body is obtained through forming a base layer, such as by thermal-spraying an aluminum alloy that contains a large amount of Si, and performing an anodizing process by AC/DC superimposition energization on the base layer. The amount of Si in the base layer may be, for example, 16 to 48 mass % with respect to the alloy as a whole.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 29, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshio Horie, Fumio Shimizu, Kenji Fukui, Naoki Nishikawa
  • Publication number: 20200370195
    Abstract: [Technical Problem] An object is to provide a heat insulation coat having a novel form/structure different from conventional ones. [Solution to Problem] The present invention provides a heat insulation coat having a spongy body that is composed of non-linear pores and a skeleton incorporating the pores. The skeleton is an amorphous body comprising Al, Si, 0, and impurities and has an amorphous peak specified by X-ray diffraction analysis at a position of 3.5 ? or more as the lattice spacing. The heat insulation coat has an apparent density of 1 g/cm3 or less, a volumetric specific heat of 1,000 kJ/m3·K or less, and a thermal conductivity of 2 W/m·K or less. The spongy body is obtained through forming a base layer, such as by thermal-spraying an aluminum alloy that contains a large amount of Si, and performing an anodizing process by AC/DC superimposition energization on the base layer. The amount of Si in the base layer may be, for example, 16 to 48 mass % with respect to the alloy as a whole.
    Type: Application
    Filed: February 26, 2020
    Publication date: November 26, 2020
    Inventors: Toshio HORIE, Fumio SHIMIZU, Kenji FUKUI, Naoki NISHIKAWA
  • Patent number: 10801403
    Abstract: The present embodiment relates to an internal combustion engine having an anodic oxide coating formed on at least a portion of an aluminum-based wall surface facing a combustion chamber. The anodic oxide coating has a plurality of nanopores extending substantially in the thickness direction of the anodic oxide coating, a first micropore extending from the surface toward the inside of the anodic oxide coating, and a second micropore present in the inside of the anodic oxide coating; the surface opening diameter of the nanopores is 0 nm or larger and smaller than 30 nm; the inside diameter of the nanopores is larger than the surface opening diameter; the film thickness of the anodic oxide coating is 15 ?m or larger and 130 ?m or smaller; and the porosity of the anodic oxide coating is 23% or more.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: October 13, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki Nishikawa, Akio Kawaguchi, Hideo Yamashita, Keisuke Tanaka, Toshio Horie, Yoshifumi Wakisaka, Fumio Shimizu
  • Publication number: 20200011237
    Abstract: The present embodiment relates to an internal combustion engine having an anodic oxide coating formed on at least a portion of an aluminum-based wall surface facing a combustion chamber. The anodic oxide coating has a plurality of nanopores extending substantially in the thickness direction of the anodic oxide coating, a first micropore extending from the surface toward the inside of the anodic oxide coating, and a second micropore present in the inside of the anodic oxide coating; the surface opening diameter of the nanopores is 0 nm or larger and smaller than 30 nm; the inside diameter of the nanopores is larger than the surface opening diameter; the film thickness of the anodic oxide coating is 15 ?m or larger and 130 ?m or smaller; and the porosity of the anodic oxide coating is 23% or more.
    Type: Application
    Filed: June 26, 2019
    Publication date: January 9, 2020
    Inventors: Naoki NISHIKAWA, Akio KAWAGUCHI, Hideo YAMASHITA, Keisuke TANAKA, Toshio HORIE, Yoshifumi WAKISAKA, Fumio SHIMIZU
  • Patent number: 10385772
    Abstract: A forming method of a thermal insulation film includes a first step of forming an anode oxidation coating film on an aluminum-based wall surface, the anode oxidation coating film including micro-pores each having a diameter of micrometer-scale and nano-pores each having a diameter of nanometer-scale; and a second step of coating a surface of the anode oxidation coating film with a sealant containing filler to seal at least part of the micro-pores and the nano-pores by the sealant so as to form the thermal insulation film.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 20, 2019
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Reona Takagishi, Naoki Nishikawa, Masaaki Tani, Toshio Horie, Fumio Shimizu, Hiroshi Hohjo, Yoshifumi Wakisaka, Masakazu Murase
  • Publication number: 20190243121
    Abstract: A sighting scope 1 includes; a scope body 2; an outer frame 3 covering at least a middle portion along an optical axis of the scope body; a rotational support structure which rotatably support the scope body 2 around a rotational axis located on a plane orthogonal to the optical axis in the outer frame; a rotational sliding contact portion which is placed between the scope body and one of opening edges at ends of the outer frame located on front and back sides of the rotational axis along the optical axis, and which is designed to be able to slide around the rotational axis; and an angular adjustment mechanism which can adjust an inclined angle of the scope body with respect to the outer frame.
    Type: Application
    Filed: December 6, 2018
    Publication date: August 8, 2019
    Inventor: Fumio Shimizu
  • Patent number: 9863312
    Abstract: In an internal combustion engine in which an anodic oxide film (10) is formed on part or all of a wall surface facing a combustion chamber, the anodic oxide film (10) has a thickness of 30 ?m to 170 ?m, the anodic oxide film (10) has first micropores (1a) having a micro-size diameter, nanopores having a nano-size diameter and second micropores (1b) having a micro-size diameter, the first micropores (1a) and the nanopores extending from a surface of the anodic oxide film (10) toward an inside of the anodic oxide film (10) in a thickness direction of the anodic oxide film (10) or substantially the thickness direction, the second micropores (1b) being provided inside the anodic oxide film (10), at least part of the first micropores (1a) and the nanopores are sealed with a seal (2) converted from a sealant (2), and at least part of the second micropores (1b) are not sealed.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: January 9, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki Nishikawa, Hiroshi Makino, Reona Takagishi, Akio Kawaguchi, Yoshifumi Wakisaka, Fumio Shimizu, Toshio Horie
  • Publication number: 20160186654
    Abstract: A forming method of a thermal insulation film includes a first step of forming an anode oxidation coating film on an aluminum-based wall surface, the anode oxidation coating film including micro-pores each having a diameter of micrometer-scale and nano-pores each having a diameter of nanometer-scale; and a second step of coating a surface of the anode oxidation coating film with a sealant containing filler to seal at least part of the micro-pores and the nano-pores by the sealant so as to form the thermal insulation film.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 30, 2016
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Reona TAKAGISHI, Naoki NISHIKAWA, Masaaki TANI, Toshio HORIE, Fumio SHIMIZU, Hiroshi HOHJO, Yoshifumi WAKISAKA, Masakazu MURASE
  • Publication number: 20160177818
    Abstract: In an internal combustion engine in which an anodic oxide film (10) is formed on part or all of a wall surface facing a combustion chamber, the anodic oxide film (10) has a thickness of 30 ?m to 170 ?m, the anodic oxide film (10) has first micropores (1a) having a micro-size diameter, nanopores having a nano-size diameter and second micropores (1b) having a micro-size diameter, the first micropores (1a) and the nanopores extending from a surface of the anodic oxide film (10) toward an inside of the anodic oxide film (10) in a thickness direction of the anodic oxide film (10) or substantially the thickness direction, the second micropores (1b) being provided inside the anodic oxide film (10), at least part of the first micropores (1a) and the nanopores are sealed with a seal (2) converted from a sealant (2), and at least part of the second micropores (1b) are not sealed.
    Type: Application
    Filed: July 30, 2014
    Publication date: June 23, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki NISHIKAWA, Hiroshi MAKINO, Reona TAKAGISHI, Akio KAWAGUCHI, Yoshifumi WAKISAKA, Fumio SHIMIZU, Toshio HORIE
  • Patent number: 9359946
    Abstract: An internal combustion engine having an anodic oxidation coating formed on at least a part of a wall surface that faces a combustion chamber, wherein the anodic oxidation coating has voids and nano-holes smaller than the voids; at least part of the voids are sealed with a sealant derived by converting a sealing agent; and at least a part of the nano-holes are not sealed.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: June 7, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki Nishikawa, Takumi Hijii, Akio Kawaguchi, Ryouta Yatsuduka, Fumio Shimizu, Yoshifumi Wakisaka, Hidemasa Kosaka
  • Patent number: 8893693
    Abstract: An internal combustion engine in which an anodic oxidation coating film is formed on all or a portion of a wall that faces a combustion chamber, wherein the anodic oxidation coating film has a structure that is provided with a bonding region in which each of hollow cells forming the coating film is bonded to the adjacent hollow cells, and a nonbonding region in which three or more adjacent hollow cells are not bonded to each other, and wherein a porosity of the anodic oxidation coating film is determined by a first void present in the hollow cell and a second void that forms the nonbonding region.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: November 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takumi Hijii, Naoki Nishikawa, Akio Kawaguchi, Koichi Nakata, Yoshifumi Wakisaka, Hidemasa Kosaka, Fumio Shimizu
  • Publication number: 20140245994
    Abstract: An internal combustion engine having an anodic oxidation coating formed on at least a part of a wall surface that faces a combustion chamber, wherein the anodic oxidation coating has voids and nano-holes smaller than the voids; at least part of the voids are sealed with a sealant derived by converting a sealing agent; and at least a part of the nano-holes are not sealed.
    Type: Application
    Filed: September 11, 2012
    Publication date: September 4, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki Nishikawa, Takumi Hijii, Akio Kawaguchi, Ryouta Yatsuduka, Fumio Shimizu, Yoshifumi Wakisaka, Hidemasa Kosaka
  • Patent number: 8613807
    Abstract: A conductive film comprises a phosphide particle coated film formed by attaching raw material particles including phosphide particles comprising a compound of Ti and/or Fe, and P to a surface of a substrate material. This conductive film exhibits good corrosion resistant conductivity, and can be easily formed at low costs because of comprising the phosphide particle coated film. A corrosion-resistant conduction film comprises an iron-containing titanium phosphide layer containing Ti, Fe and P as essential basic elements. A corrosion-resistant conduction material having this corrosion-resistant conduction film on a surface of a substrate exhibits good corrosion resistance or conductivity. This corrosion-resistant conduction material can be obtained, for example, by a process comprising a plating step of forming an Ni plating layer on a surface of a Ti-based material substrate and a nitriding step of applying nitriding treatment to the Ti-based material substrate after the plating step at not more than 880 deg.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 24, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Horie, Gaku Kitahara, Nobuaki Suzuki, Fumio Shimizu, Takao Kobayashi, Ken-ichi Suzuki, Shigeki Oshima
  • Publication number: 20130146041
    Abstract: An internal combustion engine in which an anodic oxidation coating film is formed on all or a portion of a wall that faces a combustion chamber, wherein the anodic oxidation coating film has a structure that is provided with a bonding region in which each of hollow cells forming the coating film is bonded to the adjacent hollow cells, and a nonbonding region in which three or more adjacent hollow cells are not bonded to each other, and wherein a porosity of the anodic oxidation coating film is determined by a first void present in the hollow cell and a second void that forms the nonbonding region.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 13, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takumi Hijii, Naoki Nishikawa, Akio Kawaguchi, Koichi Nakata, Yoshifumi Wakisaka, Hidemasa Kosaka, Fumio Shimizu
  • Patent number: 8327267
    Abstract: Disclosed herein is an image data processing method for processing image data forming a video material includes, an obtaining step of obtaining image data at a plurality of points in time forming the video material, from the video material, and a generating step of generating image data for display to display the image data at the plurality of points in time obtained in the obtaining step in a grouped state in a display area corresponding to the video material within a story board display area in which a plurality of materials are arranged.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: December 4, 2012
    Assignee: Sony Corporation
    Inventors: Fumio Shimizu, Hirotsugu Sato
  • Patent number: 7972653
    Abstract: A coating film removal method for a coated member having a coating film formed over the surface of a substrate is disclosed, which can easily achieve a coating film removal, even for a carbon-based coating film containing carbon as a main component, besides a carbon-based coating film containing a metal element etc. A coated member regeneration method is also disclosed, which removes a coating film from a coated member, and then forms a new coating film over the member, to regenerate the coated member. The coating film removal method is adapted to remove a carbon-based coating film from a coated member (10) including a substrate, and the carbon-based coating film coated on at least a portion of a surface of the substrate while containing carbon as a main component.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: July 5, 2011
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hideo Tachikawa, Ken-ichi Suzuki, Fumio Shimizu, Takashi Iseki
  • Patent number: 7833626
    Abstract: An amorphous carbon film includes carbon as a major component, and silicon in an amount of from 0.1 atomic % or more to 10 atomic % or less when the entire amorphous carbon film is taken as 100 atomic %. The carbon is composed of carbon having an sp2 hybrid orbital in an amount of from 60 atomic % or more to 90 atomic % or less when the entire carbon amount is taken as 100 atomic %. Also disclosed is a process for producing the amorphous carbon film.
    Type: Grant
    Filed: November 24, 2005
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Iseki, Hideo Tachikawa, Hiroyuki Mori, Kazuyuki Nakanishi, Munehisa Matsui, Shintaro Igarashi, Fumio Shimizu, Yoshinari Tsuchiya, Tadashi Oshima
  • Publication number: 20100200120
    Abstract: A conductive film comprises a phosphide particle coated film formed by attaching raw material particles including phosphide particles comprising a compound of Ti and/or Fe, and P to a surface of a substrate material. This conductive film exhibits good corrosion resistant conductivity, and can be easily formed at low costs because of comprising the phosphide particle coated film. A corrosion-resistant conduction film comprises an iron-containing titanium phosphide layer containing Ti, Fe and P as essential basic elements. A corrosion-resistant conduction material having this corrosion-resistant conduction film on a surface of a substrate exhibits good corrosion resistance or conductivity. This corrosion-resistant conduction material can be obtained, for example, by a process comprising a plating step of forming an Ni plating layer on a surface of a Ti-based material substrate and a nitriding step of applying nitriding treatment to the Ti-based material substrate after the plating step at not more than 880 deg.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 12, 2010
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Toshio Horie, Gaku Kitahara, Nobuaki Suzuki, Fumio Shimizu, Takao Kobayashi, Ken-ichi Suzuki, Shigeki Oshima
  • Patent number: 7769270
    Abstract: This invention realizes an editing system and control method thereof capable of significantly improving working efficiency of editing work. A proxy editing terminal device creates an EDL with low-resolution video/audio data, resulting in reducing time to create the EDL. Further, the low-resolution video/audio data and high-resolution video/audio data having the same contents and different resolutions are previously stored, so that the creation of a final edit list with the high-resolution video/audio data based on the EDL can be started in a short time after the EDL is created with the low-resolution video/audio data. Thus working efficiency of the editing work can be significantly reduced with reducing time to create the EDL and the final edit list.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: August 3, 2010
    Assignee: Sony Corporation
    Inventors: Nobuo Nakamura, Fumio Shimizu, Hideaki Miyauchi, Takeshi Kawamura