Patents by Inventor Gabriel Banarie

Gabriel Banarie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10236905
    Abstract: Techniques to increase a data throughput rate of a filter circuit by preloading selectable memory circuits of the filter circuit with reference data, sampling input data at an input of the filter circuit, combining the sampled input data with the preloaded reference data, and generating a filter output based on the combined sampled input data and preloaded reference data.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: March 19, 2019
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Andreas Callanan, Adrian Sherry, Gabriel Banarie, Colin G. Lyden
  • Patent number: 9806552
    Abstract: A charge rebalancing integration circuit can help keep an output node of a front-end integration circuit within a specified range, e.g., without requiring resetting of the integration capacitor. The process of monitoring and rebalancing the integration circuit can operate on a much shorter time base than the integration time period, which can allow for multiple charge balancing charge transfer events during the integration time period, and sampling of the integration capacitor once per integration time period, such as at the end of that integration time period. Information about the charge rebalancing can be used to adjust subsequent discrete-time signal processing, such as digitized values of the samples. Improved dynamic range and noise performance is possible. Computed tomography (CT) imaging and other use cases are described, including those with variable integration periods.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: October 31, 2017
    Assignee: Analog Devices Global
    Inventors: Paraic Brannick, Colin G. Lyden, Damien J. McCartney, Gabriel Banarie
  • Patent number: 9800262
    Abstract: A sigma delta analog-to-digital converter (ADC) circuit comprises a capacitive gain amplifier circuit having a first input to receive an input voltage and a second input; a loop filter circuit connected to an output of the capacitive gain amplifier circuit; a sub-ADC circuit including an output and an input connected to an output of the loop filter circuit; and a digital-to-analog (DAC) circuit including a DAC input connected to the output of the sub-ADC circuit, and a DAC output connected to the second input of the capacitive gain amplifier.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: October 24, 2017
    Assignee: Analog Devices Global
    Inventors: Roberto Sergio Matteo Maurino, Sanjay Rajasekhar, Pasquale Delizia, Colin G. Lyden, Gabriel Banarie
  • Publication number: 20170255221
    Abstract: The present disclosure relates to a method and apparatus for generating a voltage reference. More particularly the present disclosure relates to a methodology and circuitry configured to provide an output signal that combines a proportional to absolute temperature component with a complimentary to absolute temperature component to generate a stable output which is not temperature dependent.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 7, 2017
    Inventors: Stefan Marinca, Gabriel Banarie
  • Publication number: 20170237268
    Abstract: A charge rebalancing integration circuit can help keep an output node of a front-end integration circuit within a specified range, e.g., without requiring resetting of the integration capacitor. The process of monitoring and rebalancing the integration circuit can operate on a much shorter time base than the integration time period, which can allow for multiple charge balancing charge transfer events during the integration time period, and sampling of the integration capacitor once per integration time period, such as at the end of that integration time period. Information about the charge rebalancing can be used to adjust subsequent discrete-time signal processing, such as digitized values of the samples. Improved dynamic range and noise performance is possible. Computed tomography (CT) imaging and other use cases are described, including those with variable integration periods.
    Type: Application
    Filed: June 1, 2016
    Publication date: August 17, 2017
    Inventors: Paraic Brannick, Colin G. Lyden, Damien J. McCartney, Gabriel Banarie
  • Patent number: 9600014
    Abstract: The present disclosure relates to a method and apparatus for generating a voltage reference. More particularly the present disclosure relates to a methodology and circuitry configured to provide an output signal that combines a proportional to absolute temperature component with a complimentary to absolute temperature component to generate a stable output which is not temperature dependent.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: March 21, 2017
    Assignee: Analog Devices Global
    Inventors: Stefan Marinca, Gabriel Banarie
  • Patent number: 9389275
    Abstract: Techniques to provide calibration of a measurement system in conjunction with measurement operations. The techniques may include providing a reference device in a signal processing chain within the measurement system. An excitation signal may be driven through the reference device while it may be connected to the signal processing chain within the measurement system and a calibration response may be captured. During a measurement operation, the reference device connection may be complemented with a sensor connection in the signal processing chain and the excitation signal may be driven through the signal processing chain. A measurement response may be captured from the system. The measurement system may generate a calibrated measurement signal that accounts for phase and/or amplitude errors within the system from the calibration response and the measurement response.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 12, 2016
    Assignee: Analog Devices, Inc.
    Inventors: Gabriel Banarie, Andreas Callanan, Damien McCartney, Colin Lyden
  • Publication number: 20150323950
    Abstract: The present disclosure relates to a method and apparatus for generating a voltage reference. More particularly the present disclosure relates to a methodology and circuitry configured to provide an output signal that combines a proportional to absolute temperature component with a complimentary to absolute temperature component to generate a stable output which is not temperature dependent.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 12, 2015
    Applicant: ANALOG DEVICES TECHNOLOGY
    Inventors: Stefan MARINCA, Gabriel BANARIE
  • Patent number: 9124290
    Abstract: An integrator system may have a pair of sampling circuits each having a sampling capacitor to sample a respective component of a differential input signal, and an integrator having inputs coupled to outputs of the sampling circuits. The system may have a shorting switch coupled between input terminals of the sampling capacitors. The shorting switch may be engaged during an interstitial phase between sampling and output phases of the sampling circuits. By shorting input terminals of the sampling capacitors together, the design reduces current drawn by the system and, in some designs, severs relationships between current draw and information content sampled by the system. The integrator system may receive analog and digital input signals.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 1, 2015
    Assignee: ANALOG DEVICES GLOBAL
    Inventors: Adrian W. Sherry, Gabriel Banarie, Roberto S. Maurino
  • Patent number: 8653996
    Abstract: A sigma-delta analog-to-digital converter (“?? ADC”) may include a loop filter, ADC, a feedback digital-to-analog converter (“DAC”), and a control circuit. The feedback DAC may include several unit elements (resistors, capacitors, or current sources) that, ideally, are identical to each other but vary due to mismatch errors introduced during manufacture. Mismatch errors may introduce signal errors that generate undesirable noise frequencies and non-linearities in a ?? ADC output signal. Embodiments of the present invention provide a stability corrected second order shuffler that allows for the shaping of the frequency response by the ?? ADC to reduce the effect of the mismatch error between DAC unit elements. The second order shuffler may include accumulation correctors, to suppress saturation for accumulators within the shuffler. The suppression may compress the range of accumulation values for each accumulator while maintaining context for the values to stabilize operation of the second order shuffler.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 18, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Gabriel Banarie, Adrian Sherry
  • Publication number: 20130207821
    Abstract: An integrator system may have a pair of sampling circuits each having a sampling capacitor to sample a respective component of a differential input signal, and an integrator having inputs coupled to outputs of the sampling circuits. The system may have a shorting switch coupled between input terminals of the sampling capacitors. The shorting switch may be engaged during an interstitial phase between sampling and output phases of the sampling circuits. By shorting input terminals of the sampling capacitors together, the design reduces current drawn by the system and, in some designs, severs relationships between current draw and information content sampled by the system. Configurations are disclosed for analog and digital input signals.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 15, 2013
    Applicant: Analog Devices Technology
    Inventors: Adrian W. SHERRY, Gabriel BANARIE, Roberto S. MAURINO
  • Publication number: 20130207819
    Abstract: A sigma-delta analog-to-digital converter (“?? ADC”) may include a loop filter, ADC, a feedback digital-to-analog converter (“DAC”), and a control circuit. The feedback DAC may include several unit elements (resistors, capacitors, or current sources) that, ideally, are identical to each other but vary due to mismatch errors introduced during manufacture. Mismatch errors may introduce signal errors that generate undesirable noise frequencies and non-linearities in a ?? ADC output signal. Embodiments of the present invention provide a stability corrected second order shuffler that allows for the shaping of the frequency response by the ?? ADC to reduce the effect of the mismatch error between DAC unit elements. The second order shuffler may include accumulation correctors, to suppress saturation for accumulators within the shuffler. The suppression may compress the range of accumulation values for each accumulator while maintaining context for the values to stabilize operation of the second order shuffler.
    Type: Application
    Filed: November 26, 2012
    Publication date: August 15, 2013
    Inventors: Gabriel BANARIE, Adrian SHERRY
  • Publication number: 20130193982
    Abstract: Techniques to provide calibration of a measurement system in conjunction with measurement operations. The techniques may include providing a reference device in a signal processing chain within the measurement system. An excitation signal may be driven through the reference device while it may be connected to the signal processing chain within the measurement system and a calibration response may be captured. During a measurement operation, the reference device connection may be complemented with a sensor connection in the signal processing chain and the excitation signal may be driven through the signal processing chain. A measurement response may be captured from the system. The measurement system may generate a calibrated measurement signal that accounts for phase and/or amplitude errors within the system from the calibration response and the measurement response.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicant: ANALOG DEVICES, INC.
    Inventors: Gabriel Banarie, Andreas Callanan, Damien McCartney, Colin Lyden
  • Patent number: 7304483
    Abstract: A differential capacitor one terminal capacitor interface circuit for sensing the capacitance of first and second capacitors includes a differential integrating amplifier having first and second summing nodes and an input common mode voltage; and a switching circuit for charging a first capacitor of said differential one terminal capacitor to a first voltage level and a second capacitor of said differential one terminal capacitor to a second voltage level in a first phase, in a second phase connecting said first capacitor to said first summing node and said second capacitor to said second summing node of said amplifier to provide first and second output changes substantially representative of the difference between said first and second voltage levels and said input common mode voltage, in a third phase charging said first capacitor to said second voltage level and said second capacitor to said first voltage level, and in a fourth phase connecting said first capacitor to said second summing node and said seco
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: December 4, 2007
    Assignee: Analog Devices, Inc.
    Inventors: John O'Dowd, Damien McCartney, Gabriel Banarie
  • Publication number: 20070247171
    Abstract: A differential capacitor one terminal capacitor interface circuit for sensing the capacitance of first and second capacitors includes a differential integrating amplifier having first and second summing nodes and an input common mode voltage; and a switching circuit for charging a first capacitor of said differential one terminal capacitor to a first voltage level and a second capacitor of said differential one terminal capacitor to a second voltage level in a first phase, in a second phase connecting said first capacitor to said first summing node and said second capacitor to said second summing node of said amplifier to provide first and second output changes substantially representative of the difference between said first and second voltage levels and said input common mode voltage, in a third phase charging said first capacitor to said second voltage level and said second capacitor to said first voltage level, and in a fourth phase connecting said first capacitor to said second summing node and said seco
    Type: Application
    Filed: June 25, 2007
    Publication date: October 25, 2007
    Inventors: John O'Dowd, Damien McCartney, Gabriel Banarie
  • Patent number: 7235983
    Abstract: A one terminal capacitor interface circuit for sensing the capacitance of a capacitor includes a differential integrating amplifier having an input common mode voltage and two summing nodes whose voltage is substantially equal to the input common mode voltage, a switching circuit for charging the capacitor to a first voltage level in a first phase, connecting, in a second phase, the capacitor to one of the summing nodes of the differential amplifier to provide a first output change substantially representative of the difference between the first voltage level and the input common mode voltage, and also representative of the capacitor; charging the capacitor to a second voltage level in a third phase, and connecting, in a fourth phase, the capacitor to the other summing node of the differential amplifier to provide a second output change substantially representative of the difference between the second voltage level and the input common mode voltage, and also representative of the capacitor; the combined first
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: June 26, 2007
    Assignee: Analog Devices, Inc.
    Inventors: John O'Dowd, Damien McCartney, Gabriel Banarie
  • Publication number: 20060213270
    Abstract: A one terminal capacitor interface circuit for sensing the capacitance of a capacitor includes a differential integrating amplifier having an input common mode voltage and two summing nodes whose voltage is substantially equal to the input common mode voltage, a switching circuit for charging the capacitor to a first voltage level in a first phase, connecting, in a second phase, the capacitor to one of the summing nodes of the differential amplifier to provide a first output change substantially representative of the difference between the first voltage level and the input common mode voltage, and also representative of the capacitor; charging the capacitor to a second voltage level in a third phase, and connecting, in a fourth phase, the capacitor to the other summing node of the differential amplifier to provide a second output change substantially representative of the difference between the second voltage level and the input common mode voltage, and also representative of the capacitor; the combined first
    Type: Application
    Filed: March 8, 2006
    Publication date: September 28, 2006
    Inventors: John O'Dowd, Damien McCartney, Gabriel Banarie