Patents by Inventor Gareth Mcdarby

Gareth Mcdarby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11801009
    Abstract: Methods and apparatus monitor health by detection of sleep stage. For example, a sleep stage monitor (100) may access sensor data signals related to bodily movement and/or respiration movements. At least a portion of the detected signals may be analyzed to calculate respiration variability. The respiration variability may include one or more of variability of respiration rate and variability of respiration amplitude. A processor may then determine a sleep stage based on one or more of respiration variability and bodily movement, such as with a combination of both. The determination of sleep stages may distinguish between deep sleep and other stages of sleep, or may differentiate between deep sleep, light sleep and REM sleep. The bodily movement and respiration movement signals may be derived from one or more sensors, such as non-invasive sensor (e.g., a non-contact radio-frequency motion sensor or a pressure sensitive mattress).
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: October 31, 2023
    Inventors: Gareth McDarby, Emer O'Hare, Paul Phillips, Conor Heneghan, Trevor Murray
  • Publication number: 20230248935
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Application
    Filed: April 19, 2023
    Publication date: August 10, 2023
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Redmond SHOULDICE, Colin Lawlor, Matthew Norton, David Mulligan, Stephen McMahon, Paul Phillips, Damien O'Rourke, Luke Gahan, Marc Lavelle, Conor Heneghan, Alberto Zaffaroni, Gareth McDarby
  • Patent number: 11648373
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: May 16, 2023
    Inventors: Redmond Shouldice, Colin John Lawlor, Matthew Norton, David Mulligan, Stephen McMahon, Paul Phillips, Damien O'Rourke, Luke Gahan, Marc Lavelle, Conor Heneghan, Alberto Zaffaroni, Gareth McDarby
  • Publication number: 20220280747
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Application
    Filed: March 31, 2022
    Publication date: September 8, 2022
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Redmond SHOULDICE, Colin John LAWLOR, Matthew NORTON, David MULLIGAN, Stephen MCMAHON, Paul PHILLIPS, Damien O'ROURKE, Luke GAHAN, Marc LAVELLE, Conor HENEGHAN, Alberto ZAFFARONI, Gareth MCDARBY
  • Patent number: 11364362
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: June 21, 2022
    Inventors: Redmond Shouldice, Colin Lawlor, Matthew Norton, David Mulligan, Stephen McMahon, Paul Phillips, Damien O'Rourke, Luke Gahan, Marc Lavelle, Conor Heneghan, Alberto Zaffaroni, Gareth McDarby
  • Patent number: 11324917
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: May 10, 2022
    Inventors: Redmond Shouldice, Colin Lawlor, Matthew Norton, David Mulligan, Stephen McMahon, Paul Phillips, Damien O'Rourke, Luke Gahan, Marc Lavelle, Conor Heneghan, Alberto Zaffaroni, Gareth McDarby
  • Patent number: 11172835
    Abstract: A method of monitoring sleep comprises simultaneously recording a person's electrocardiogram (ECG) and photoplethysmogram (PPG), deriving a plurality of parameters from the recorded data, and providing an output indicative of a sleep characteristic based upon an analysis of the parameters. The ECG and PPG may be recorded using an apparatus which is a combination of a Holter monitor and a pulse oximeter, which is wearable in ambulatory manner.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 16, 2021
    Inventors: Conor Heneghan, Eric Chern-Pin Chua, Gareth McDarby
  • Publication number: 20200337634
    Abstract: Methods and apparatus monitor health by detection of sleep stage. For example, a sleep stage monitor (100) may access sensor data signals related to bodily movement and/or respiration movements. At least a portion of the detected signals may be analyzed to calculate respiration variability. The respiration variability may include one or more of variability of respiration rate and variability of respiration amplitude. A processor may then determine a sleep stage based on one or more of respiration variability and bodily movement, such as with a combination of both. The determination of sleep stages may distinguish between deep sleep and other stages of sleep, or may differentiate between deep sleep, light sleep and REM sleep. The bodily movement and respiration movement signals may be derived from one or more sensors, such as non-invasive sensor (e.g., a non-contact radio-frequency motion sensor or a pressure sensitive mattress).
    Type: Application
    Filed: April 13, 2020
    Publication date: October 29, 2020
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Gareth McDarby, Erner O'Hare, Paul Phillips, Conor Heneghan, Trevor Murray
  • Patent number: 10660563
    Abstract: Methods and apparatus monitor health by detection of sleep stage. For example, a sleep stage monitor (100) may access sensor data signals related to bodily movement and/or respiration movements. At least a portion of the detected signals may be analyzed to calculate respiration variability. The respiration variability may include one or more of variability of respiration rate and variability of respiration amplitude. A processor may then determine a sleep stage based on one or more of respiration variability and bodily movement, such as with a combination of both. The determination of sleep stages may distinguish between deep sleep and other stages of sleep, or may differentiate between deep sleep, light sleep and REM sleep. The bodily movement and respiration movement signals may be derived from one or more sensors, such as non-invasive sensor (e.g., a non-contact radio-frequency motion sensor or a pressure sensitive mattress).
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: May 26, 2020
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Gareth McDarby, Emer O'Hare, Paul Phillips, Conor Heneghan, Trevor Murray
  • Publication number: 20200009349
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 9, 2020
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Redmond SHOULDICE, Colin LAWLOR, Matthew NORTON, David MULLIGAN, Stephen MCMAHON, Paul PHILLIPS, Damien O'ROURKE, Luke GAHAN, Marc LAVELLE, Conor HENEGHAN, Alberto ZAFFARONI, Gareth MCDARBY
  • Patent number: 10376670
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: August 13, 2019
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Redmond Shouldice, Colin John Lawlor, Matthew Norton, David Mulligan, Stephen McMahon, Paul Phillips, Damien O'Rourke, Luke Gahan, Marc Lavelle, Conor Heneghan, Alberto Zaffaroni, Gareth McDarby
  • Publication number: 20190209020
    Abstract: A method of monitoring sleep comprises simultaneously recording a person's electrocardiogram (ECG) and photoplethysmogram (PPG), deriving a plurality of parameters from the recorded data, and providing an output indicative of a sleep characteristic based upon an analysis of the parameters. The ECG and PPG may be recorded using an apparatus which is a combination of a Holter monitor and a pulse oximeter, which is wearable in ambulatory manner.
    Type: Application
    Filed: November 8, 2018
    Publication date: July 11, 2019
    Inventors: Conor Heneghan, Chern-Pin Chua, Gareth McDarby
  • Patent number: 10154790
    Abstract: A method of monitoring sleep comprises simultaneously recording a person's electrocardiogram (ECG) and photoplethysmogram (PPG), deriving a plurality of parameters from the recorded data, and providing an output indicative of a sleep characteristic based upon an analysis of the parameters. The ECG and PPG may be recorded using an apparatus which is a combination of a Holter monitor and a pulse oximeter, which is wearable in ambulatory manner.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: December 18, 2018
    Assignee: University College Dublin, National University of Ireland
    Inventors: Conor Heneghan, Eric C.-P. Chua, Gareth McDarby
  • Publication number: 20160151603
    Abstract: A processing system includes methods to promote sleep. The system may include a monitor such as a non-contact motion sensor from which sleep information may be determined. User sleep information, such as sleep stages, hypnograms, sleep scores, mind recharge scores and body scores, may be recorded, evaluated and/or displayed for a user. The system may further monitor ambient and/or environmental conditions corresponding to sleep sessions. Sleep advice may be generated based on the sleep information, user queries and/or environmental conditions from one or more sleep sessions. Communicated sleep advice may include content to promote good sleep habits and/or detect risky sleep conditions. In some versions of the system, any one or more of a bedside unit 3000 sensor module, a smart processing device, such as a smart phone or smart device 3002, and network servers may be implemented to perform the methodologies of the system.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 2, 2016
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Redmond Shouldice, Colin John Lawlor, Matthew Norton, David Mulligan, Stephen McMahon, Paul Phillips, Damien O'Rourke, Luke Gahan, Marc Lavelle, Conor Heneghan, Alberto Zaffaroni, Gareth McDarby
  • Publication number: 20150230750
    Abstract: Methods and apparatus monitor health by detection of sleep stage. For example, a sleep stage monitor (100) may access sensor data signals related to bodily movement and/or respiration movements. At least a portion of the detected signals may be analyzed to calculate respiration variability. The respiration variability may include one or more of variability of respiration rate and variability of respiration amplitude. A processor may then determine a sleep stage based on one or more of respiration variability and bodily movement, such as with a combination of both. The determination of sleep stages may distinguish between deep sleep and other stages of sleep, or may differentiate between deep sleep, light sleep and REM sleep. The bodily movement and respiration movement signals may be derived from one or more sensors, such as non-invasive sensor (e.g., a non-contact radio-frequency motion sensor or a pressure sensitive mattress).
    Type: Application
    Filed: September 19, 2013
    Publication date: August 20, 2015
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Gareth McDarby, Emer O'Hare, Paul Phillips, Conor Heneghan, Trevor Murray
  • Publication number: 20110124979
    Abstract: A method of monitoring sleep comprises simultaneously recording a person's electrocardiogram (ECG) and photoplethysmogram (PPG), deriving a plurality of parameters from the recorded data, and providing an output indicative of a sleep characteristic based upon an analysis of the parameters. The ECG and PPG may be recorded using an apparatus which is a combination of a Holter monitor and a pulse oximeter, which is wearable in ambulatory manner.
    Type: Application
    Filed: August 11, 2008
    Publication date: May 26, 2011
    Inventors: Conor Heneghan, Eric C.-P. Chua, Gareth Mcdarby