Patents by Inventor Gary Allen Hart

Gary Allen Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11143800
    Abstract: A highly reflective mirror for use in the wavelength range of 0.300 ?m to 15 ?m includes a substrate, a first interface layer, a reflective layer, a second interface layer, a plurality of tuning layers including a combination of a low index material and a high index material wherein the high index material is HfO2, and a protective layer. The highly reflective mirror has a reflectivity of at least 90% over the wavelength range of 335 nm to 1000 nm at an angle of incidence (AOI) of 45°.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: October 12, 2021
    Assignee: Corning Incorporated
    Inventors: Jason Scott Ballou, Gary Allen Hart, Leonard Gerard Wamboldt
  • Patent number: 10955594
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 23, 2021
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 10761247
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: September 1, 2020
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 10605966
    Abstract: A method for coating substrates is provided. The method includes diamond turning a substrate to a surface roughness of between about 60 ? and about 100 ? RMS, wherein the substrate is one of a metal and a metal alloy. The method further includes polishing the diamond turned surface of the substrate to a surface roughness of between about 10 ? and about 25 ? to form a polished substrate, heating the polished substrate, and ion bombarding the substrate with an inert gas. The method includes depositing a coating including at least one metallic layer on the ion bombarded surface of the substrate using low pressure magnetron sputtering, and polishing the coating to form a finished surface having a surface roughness of less than about 25 ? RMS using a glycol based colloidal solution.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: March 31, 2020
    Assignee: Corning Incorporated
    Inventors: Joseph Charles Crifasi, Gary Allen Hart, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20180364402
    Abstract: A highly reflective mirror for use in the wavelength range of 0.300 ?m to 15 ?m includes a substrate, a first interface layer, a reflective layer, a second interface layer, a plurality of tuning layers including a combination of a low index material and a high index material wherein the high index material is HfO2, and a protective layer. The highly reflective mirror has a reflectivity of at least 90% over the wavelength range of 335 nm to 1000 nm at an angle of incidence (AOI) of 45°.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 20, 2018
    Inventors: Jason Scott Ballou, Gary Allen Hart, Leonard Gerard Wamboldt
  • Publication number: 20180364024
    Abstract: A beam-shaping optical system suitable for use with optical coherence tomography having a beam-shaping insert having a polymeric material, the beam-shaping insert integrally defining a beam-shaping element. The beam-shaping element has a reflective element positioned on a curved surface. A light source generates an electromagnetic beam. An optical fiber having a core and a cladding, the optical fiber having first end optically coupled with the light source and a fiber end. The fiber end is configured to emit the electromagnetic beam toward the beam-shaping element. The reflective element has a reflectivity greater than about 98% for both a first wavelength band of the electromagnetic beam and a second wavelength band of the electromagnetic beam.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 20, 2018
    Inventors: Adra Smith Baca, Robert Randall Hancock, JR., Gary Allen Hart, Horst Schreiber, Daniel Max Staloff, Jue Wang
  • Publication number: 20180259688
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 13, 2018
    Inventors: Jason Scott Ballou, Frederick J. Gagliardi, Gary Allen Hart, Timothy R. Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20180196173
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20180180777
    Abstract: A method for coating substrates is provided. The method includes diamond turning a substrate to a surface roughness of between about 60 ? and about 100 ? RMS, wherein the substrate is one of a metal and a metal alloy. The method further includes polishing the diamond turned surface of the substrate to a surface roughness of between about 10 ? and about 25 ? to form a polished substrate, heating the polished substrate, and ion bombarding the substrate with an inert gas. The method includes depositing a coating including at least one metallic layer on the ion bombarded surface of the substrate using low pressure magnetron sputtering, and polishing the coating to form a finished surface having a surface roughness of less than about 25 ? RMS using a glycol based colloidal solution.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Inventors: Joseph Charles Crifasi, Gary Allen Hart, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 9995860
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: June 12, 2018
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 9971073
    Abstract: A method for coating substrates is provided. The method includes diamond turning a substrate to a surface roughness of between about 60 ? and about 100 ? RMS, wherein the substrate is one of a metal and a metal alloy. The method further includes polishing the diamond turned surface of the substrate to a surface roughness of between about 10 ? and about 25 ? to form a polished substrate, heating the polished substrate, and ion bombarding the substrate with an inert gas. The method includes depositing a coating including at least one metallic layer on the ion bombarded surface of the substrate using low pressure magnetron sputtering, and polishing the coating to form a finished surface having a surface roughness of less than about 25 ? RMS using a glycol based colloidal solution.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 15, 2018
    Assignee: Corning Incorporated
    Inventors: Joseph Charles Crifasi, Gary Allen Hart, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20170227689
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR-SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types, methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: September 15, 2016
    Publication date: August 10, 2017
    Inventors: Jason S. Ballou, Frederick J. Gagliardi, Gary Allen Hart, Timothy R. Soucy, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Patent number: 9488760
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR_SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective layer are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 8, 2016
    Assignee: Corning Incorporated
    Inventors: Jason S Ballou, Frederick J Gagliardi, Gary Allen Hart, Timothy R Soucy, Robin Merchant Walton, Leonard G Wamboldt, Jue Wang
  • Publication number: 20150293275
    Abstract: A method for coating substrates is provided. The method includes diamond turning a substrate to a surface roughness of between about 60 ? and about 100 ? RMS, wherein the substrate is one of a metal and a metal alloy. The method further includes polishing the diamond turned surface of the substrate to a surface roughness of between about 10 ? and about 25 ? to form a polished substrate, heating the polished substrate, and ion bombarding the substrate with an inert gas. The method includes depositing a coating including at least one metallic layer on the ion bombarded surface of the substrate using low pressure magnetron sputtering, and polishing the coating to form a finished surface having a surface roughness of less than about 25 ? RMS using a glycol based colloidal solution.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 15, 2015
    Inventors: Joseph Charles Crifasi, Gary Allen Hart, Robin Merchant Walton, Leonard Gerard Wamboldt, Jue Wang
  • Publication number: 20140240821
    Abstract: The disclosure is directed to a highly reflective multiband mirror that is reflective in the VIS-NIR_SWIR-MWIR-LWIR bands, the mirror being a complete thin film stack that consists of a plurality of layers on a selected substrate. In order from substrate to the final layer, the mirror consists of (a) substrate, (b) barrier layer, (c) first interface layer, (d) a reflective layer, (e) a second interface layer, (f) tuning layer(s) and (g) a protective layer. In some embodiments the tuning layer and the protective are combined into a single layer using a single coating material. The multiband mirror is more durable than existing mirrors on light weight metal substrates, for example 6061-Al, designed for similar applications. In each of the five layer types methods and materials are used to process each layer so as to achieve the desired layer characteristics, which aid to enhancing the durability performance of the stack.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 28, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Jason S. Ballou, Frederick J. Gagliardi, Gary Allen Hart, Timothy R. Soucy, Robin Merchant Walton, Leonard G. Wamboldt, Jue Wang
  • Patent number: 7683450
    Abstract: The invention is directed to preparing optical elements having a thin, smooth, dense coating or film thereon, and a method for making such coating or film. The coated element has a surface roughness of <1.0 nm rms. The coating materials include hafnium oxide or a mixture of hafnium oxide and another oxide material, for example silicon dioxide. The method includes the use of a reverse mask to deposit the coating or film on a rotating substrate.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 23, 2010
    Assignee: Corning Incorporated
    Inventors: Gary Allen Hart, Robert LeRoy Maier, Jue Wang
  • Publication number: 20090097105
    Abstract: The invention is directed to preparing optical elements having a thin, smooth, dense coating or film thereon, and a method for making such coating or film. The coated element has a surface roughness of <1.0 nm rms. The coating materials include hafnium oxide or a mixture of hafnium oxide and another oxide material, for example silicon dioxide. The method includes the use of a reverse mask to deposit the coating or film on a rotating substrate.
    Type: Application
    Filed: November 7, 2008
    Publication date: April 16, 2009
    Inventors: Gary Allen Hart, Robert LeRoy Maier, Jue Wang
  • Patent number: 7465681
    Abstract: The invention is directed to preparing optical elements having a thin, smooth, dense coating or film thereon, and a method for making such coating or film. The coated element has a surface roughness of <1.0 nm rms. The coating materials include hafnium oxide or a mixture of hafnium oxide and another oxide material, for example silicon dioxide. The method includes the use of a reverse mask to deposit the coating or film on a rotating substrate.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 16, 2008
    Assignee: Corning Incorporated
    Inventors: Gary Allen Hart, Robert LeRoy Maier, Jue Wang
  • Publication number: 20080050910
    Abstract: The invention is directed to preparing optical elements having a thin, smooth, dense coating or film thereon, and a method for making such coating or film. The coated element has a surface roughness of <1.0 nm rms. The coating materials include hafnium oxide or a mixture of hafnium oxide and another oxide material, for example silicon dioxide. The method includes the use of a reverse mask to deposit the coating or film on a rotating substrate.
    Type: Application
    Filed: August 25, 2006
    Publication date: February 28, 2008
    Inventors: Gary Allen Hart, Robert LeRoy Maier, Jue Wang
  • Patent number: 3964094
    Abstract: The position of a length of magnetic recording tape, adjacent a rotating head device, is servo controlled to accurately position a transverse tape data track in alignment with the head path. The tape includes two distinctive servo indicia. The first indicia is a magnetic flux transition which is oriented substantially parallel to the edge of the tape. The second indicia is a magnetic flux transition which is oriented at an angle to the edge of the tape. This second indicia is parallel to the magnetic flux transitions which comprise the data track, and said distinctive second indicia is provided for each data track to define the physical location thereof. The rotating head includes two head gaps, one of which is parallel to the first indicia, and the other of which is parallel to the second indicia. The head gaps angular relationship insures that the respective head gaps will read only that indicia which is parallel therewith.
    Type: Grant
    Filed: November 7, 1974
    Date of Patent: June 15, 1976
    Assignee: International Business Machines Corporation
    Inventor: Gary Allen Hart