Patents by Inventor Gary S. Guthart

Gary S. Guthart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110270271
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: November 3, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264112
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Shena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264110
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264108
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, Larkin David Q., Gary S. Guthart
  • Publication number: 20110264111
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110264109
    Abstract: Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Paul W. Mohr, Bruce M. Schena, David Q. Larkin, Gary S. Guthart
  • Publication number: 20110137322
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Applicant: Intuitive Surgical Operations
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Publication number: 20110105898
    Abstract: Systems and methods for performing robotically-assisted surgical procedures on a patient enable an image display device to provide an operator with auxiliary information related to the surgical procedure, in addition to providing an image of the surgical site itself. The systems and methods allow an operator to selectively access and reference auxiliary information on the image display device during the performance of a surgical procedure.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 5, 2011
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Gary S. GUTHART, David Q. LARKIN, David J. ROSA, Paul W. MOHR, Giuseppe PRISCO
  • Patent number: 7865266
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 4, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Patent number: 7806891
    Abstract: The invention provides robotic surgical systems which allow selectable independent repositioning of an input handle of a master controller and/or a surgical end effector without corresponding movement of the other. In some embodiments, independent repositioning is limited to translational degrees of freedom. In other embodiments, the system provides an input device adjacent a manipulator supporting the surgical instrument so that an assistant can reposition the instrument at the patient's side.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: October 5, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, J. Kenneth Salisbury, Jr., Gunter D. Niemeyer
  • Patent number: 7778733
    Abstract: Surgical robots and other telepresence systems have enhanced grip actuation for manipulating tissues and objects with small sizes. A master/slave system is used in which an error signal or gain is artificially altered when grip members are near a closed configuration.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: August 17, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, Robert G. Younge, Thomas G. Cooper, Craig Gerbi, Stephen J. Blumenkranz, Dean F. Hoornaert
  • Patent number: 7763015
    Abstract: A robotic surgery system comprises a mounting base, a plurality of surgical instruments, and an articulate support assembly. Each instrument is insertable into a patient through an associated minimally invasive aperture to a desired internal surgical site. The articulate support assembly movably supports the instruments relative to the base. The support generally comprises an orienting platform, a platform linkage movably supporting the orienting platform relative to the base, and a plurality of manipulators mounted to the orienting platform, wherein each manipulator movably supports an associated instrument.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: July 27, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Thomas G. Cooper, Stephen J. Blumenkranz, Gary S. Guthart, David J Rosa
  • Patent number: 7607440
    Abstract: Methods and apparatus for enhancing surgical planning provide enhanced planning of entry port placement and/or robot position for laparoscopic, robotic, and other minimally invasive surgery. Various embodiments may be used in robotic surgery systems to identify advantageous entry ports for multiple robotic surgical tools into a patient to access a surgical site. Generally, data such as imaging data is processed and used to create a model of a surgical site, which can then be used to select advantageous entry port sites for two or more surgical tools based on multiple criteria. Advantageous robot positioning may also be determined, based on the entry port locations and other factors. Validation and simulation may then be provided to ensure feasibility of the selected port placements and/or robot positions. Such methods, apparatus, and systems may also be used in non-surgical contexts, such as for robotic port placement in munitions diffusion or hazardous waste handling.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: October 27, 2009
    Assignee: Intuitive Surgical, Inc.
    Inventors: Eve C. Coste-Maniere, Louai Adhami, Jean-Daniel Boissonnat, Alain Carpentier, Gary S. Guthart
  • Publication number: 20090248038
    Abstract: An apparatus, system, and method for improving force and torque sensing and feedback to the surgeon performing a telerobotic surgery are provided. In one embodiment, a robotic surgical manipulator system, a robotic surgical system, and a method for improved sensing of forces on a robotic surgical instrument and/or manipulator arm are disclosed.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: Intuitive Surgical Inc., a Delaware Corporation
    Inventors: Stephen J. Blumenkranz, Giuseppe M. Prisco, Simon Peter DiMaio, Gregory William Dachs, II, Hanifa Dostmohamed, Christopher J. Hasser, Gary S. Guthart
  • Publication number: 20090248043
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Application
    Filed: March 19, 2009
    Publication date: October 1, 2009
    Applicant: Intuitive Surgical, Inc.
    Inventors: Michael J. Tierney, Thomas G. Cooper, Chris A. Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Publication number: 20090234371
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 17, 2009
    Applicant: Intuitive Surgical, Inc.
    Inventors: Michael J. Tierney, Thomas G. Cooper, Chris A. Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Publication number: 20090163931
    Abstract: A robotic surgery system comprises a mounting base, a plurality of surgical instruments, and an articulate support assembly. Each instrument is insertable into a patient through an associated minimally invasive aperture to a desired internal surgical site. The articulate support assembly movably supports the instruments relative to the base. The support generally comprises an orienting platform, a platform linkage movably supporting the orienting platform relative to the base, and a plurality of manipulators mounted to the orienting platform, wherein each manipulator movably supports an associated instrument.
    Type: Application
    Filed: January 29, 2009
    Publication date: June 25, 2009
    Applicant: Intuitive Surgical, Inc.
    Inventors: Thomas G. Cooper, Stephen J. Blumenkranz, Gary S. Guthart, David J. Rosa
  • Patent number: 7524320
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: April 28, 2009
    Assignee: Intuitive Surgical, Inc.
    Inventors: Michael J. Tierney, Thomas G. Cooper, Chris A. Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Publication number: 20080154246
    Abstract: Surgical robots and other telepresence systems have enhanced grip actuation for manipulating tissues and objects with small sizes. A master/slave system is used in which an error signal or gain is artificially altered when grip members are near a closed configuration.
    Type: Application
    Filed: January 18, 2008
    Publication date: June 26, 2008
    Applicant: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, Robert G. Younge, Thomas G. Cooper, Craig Gerbi, Stephen J. Blumenkranz, Dean F. Hoornaert
  • Patent number: 7373219
    Abstract: Surgical robots and other telepresence systems have enhanced grip actuation for manipulating tissues and objects with small sizes. A master/slave system is used in which an error signal or gain is artificially altered when grip members are near a closed configuration.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: May 13, 2008
    Assignee: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, Robert G. Younge, Tom G. Cooper, Craig Gerbi, Steven J. Blumenkranz, Dean F. Hoornaert