Patents by Inventor Gene Bornzin

Gene Bornzin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951319
    Abstract: The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 9, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Xiaoyi Min, Wenwen Li, Stuart Rosenberg, Kyungmoo Ryu, Alexander Bornzin, Leyla Sabet, Shubha Asopa, Xing Pei
  • Patent number: 11931568
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Publication number: 20240074706
    Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 11890100
    Abstract: A delivery device for delivering a pacing lead to the His bundle of a patient's heart includes an elongated sheath having a distal end, and a plurality of mapping electrodes positioned at the distal end. The distal end of the sheath may have a distal tip, and the mapping electrodes may include two electrodes that diametrically oppose one another at a position spaced from the distal tip of the sheath. The sheath includes a plurality of flexible sections spaced apart from one another, and a pull wire that causes the sheath to deflect from a straight configuration to a dual hinged curved configuration that positions the electrodes in the vicinity of the bundle of His.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: February 6, 2024
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Scott A. Kramer, Erich W. Stoermer, Joshua C. Conway, Gene A. Bornzin, Zoltan Somogyi, Amy L. Hanenburg, Emily Weiss, Paul A. Belk, Patrick P. Senarith
  • Patent number: 11864901
    Abstract: A delivery device for delivering a pacing lead to the His bundle of a patient's heart includes an elongated sheath having a distal end, and a plurality of mapping electrodes positioned at the distal end. The distal end of the sheath may have a distal tip, and the mapping electrodes may include two electrodes that diametrically oppose one another at a position spaced from the distal tip of the sheath. The sheath includes a plurality of flexible sections spaced apart from one another, and a pull wire that causes the sheath to deflect from a straight configuration to a dual hinged curved configuration that positions the electrodes in the vicinity of the bundle of His.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: January 9, 2024
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Scott A. Kramer, Erich W. Stoermer, Joshua C. Conway, Gene A. Bornzin, Zoltan Somogyi, Amy L. Hanenburg, Emily Weiss, Paul A. Belk, Patrick P. Senarith
  • Patent number: 11844630
    Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: December 19, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20230381500
    Abstract: Methods and implantable medical devices are provided that include a lead configured to be operably coupled to a pulse generator and subcutaneously implanted within a patient. The lead includes an electrode configured to receive electrical power from the pulse generator and to deliver high-voltage shocks for defibrillation therapy. The electrode has an oblong cross-sectional shape with a major dimension that is at least 10 French (F).
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: Alexander R. Bornzin, Gene A. Bornzin, Zoltan Somogyi
  • Patent number: 11793445
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity. The methods and systems declare a current beat, from the CA signals, to be a candidate beat or an ineligible beat based on whether the current beat satisfies the rate based selection criteria. The determining and declaring operations are repeated for multiple beats to form an ensemble of candidate beats. The method and system calculate a P-wave segment ensemble from the ensemble of candidate beats, perform a morphology-based comparison between the P-wave segment ensemble and at least one of a monophasic or biphasic template, declare a valid P-wave to be present within the CA signals based on the morphology-based comparison, and utilize the valid P-wave in an arrhythmia detection process to determine at least one of an arrhythmia entry, arrhythmia presence or arrhythmia exit.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: October 24, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Neha Malhotra, Fujian Qu, Jong Gill, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 11786741
    Abstract: Systems and methods for implanting a lead. The system includes an active guidewire having proximal and distal ends. The distal end includes a guidewire anchor that is configured to be attached to a target SOL. The active guidewire is configured to be utilized to electrically map the target SOI by at least one of delivering stimulation energy through the active guide wire to the target SOI or sensing an evoked response at the target SOI from the guidewire. The system also includes a lead having a lead body with proximal and distal ends and with a lumen extending between the proximal and distal ends. The distal end of the lead body is configured to receive the proximal end of the active guidewire. The lumen is configured to permit the lead body to be advanced over the active guidewire.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: October 17, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Alexander R. Bornzin, Gene A. Bornzin, Zoltan Somogyi, Wenwen Li, Xiaoyi Min
  • Publication number: 20230321447
    Abstract: A device comprises external electrodes configured to be held proximate to a patient's skin and to sense conductive communication signals transmitted by an implantable medical device (IMD) within the patient. A dielectric layer is provided on at least a first electrode of the external electrodes to space the first electrode apart from the patient's skin to form a non-contact capacitively coupled interface between the patient's skin and the first electrode. The capacitively coupled interface is sensitive to the conductive communication signals. A circuit is connected to the external electrodes and is configured to output a differential signal corresponding to the conductive communication signals.
    Type: Application
    Filed: March 6, 2023
    Publication date: October 12, 2023
    Inventors: Aditya Goil, Gene A. Bornzin, Thanh Tieu, Robert J. Williams, Alexander R. Bornzin
  • Patent number: 11730955
    Abstract: Systems and methods for implanting a medical device include an implantable lead comprising a lead body having a distal end and a proximal end. The implantable lead has electrodes positioned at the distal end and has a lead connector positioned at the proximal end. The lead connector includes lead contacts that are communicatively coupled to the electrodes positioned at the distal end. The lead body has a body outer envelope configured to fit within a lumen of an introducer sheath and the lead connector has a connector outer envelope configured to fit within the lumen of the introducer sheath. A pulse generator has a connector cavity. The lead adaptor is configured to interconnect the implantable lead and the pulse generator. The lead adaptor has an insertable connector that includes mating contacts and an adaptor cavity that includes cavity contacts. The cavity contacts are positioned to engage the lead contacts of the lead connector when the lead connector is inserted into the adaptor cavity.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Alexander R. Bornzin, Gene A. Bornzin, Zoltan Somogyi
  • Publication number: 20230191121
    Abstract: A biostimulator and a pace mapping system for deep septal pacing. The biostimulator includes a pacing element that extends distally beyond a fixation element. The pacing element is insulated between a distal tip of the fixation element and a distal portion of the pacing element. The pace mapping system can be used to determine a distance between a septal wall of a heart septum and a bundle branch within the septum. The pacing element can be selected based on the distance, and delivered into the septum to pace the bundle branch. Other embodiments are also described and claimed.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 22, 2023
    Inventors: Gene A. Bornzin, Zoltan Somogyi, Kyungmoo Ryu, Kyle J. Nix, Keith Victorine
  • Patent number: 11666765
    Abstract: A biostimulator, such as a leadless pacemaker, has electrode(s) coated with low-polarization coating(s). A low-polarization coating including titanium nitride can be disposed on an anode, and a low-polarization coating including a first layer of titanium nitride and a second layer of platinum black can be disposed on a cathode. The anode can be an attachment feature used to transmit torque to the biostimulator. The cathode can be a fixation element used to affix the biostimulator to a target tissue. The low-polarization coating(s) impart low-polarization to the electrode(s) to enable an atrial evoked response to be detected and used to effect automatic output regulation of the biostimulator. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: June 6, 2023
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Wesley Alleman, Tyler J. Strang, Keith Victorine, Nicole Cooper
  • Publication number: 20230149727
    Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 18, 2023
    Inventors: Jong Gill, Gene Bornzin
  • Patent number: 11642540
    Abstract: An implantable lead includes a lead body, electrical conductors, and a lead anchor. The lead body includes an electrode segment configured to be positioned along a pericardial membrane of a heart and including a plurality of electrodes configured to at least one of sense electrical signals from the heart or deliver therapy to the heart. The electrical conductors extend through the lead body between distal and proximal ends of the lead body, and are configured to electrically couple the electrodes to a pulse generator. The lead anchor is configured to be secured to a chest wall. The electrical conductors extend through the lead anchor, and the electrode segment extends from the lead anchor to the pericardial membrane. The electrode segment includes a transition portion that is configured to extend a depth into a mediastinum and a contoured portion to extend alongside and curve about the pericardial membrane.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: May 9, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Zoltan Somogyi, Kyungmoo Ryu
  • Patent number: 11633141
    Abstract: Computer implemented methods and systems for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains a far field cardiac activity (CA) data set that includes far field CA signals for beats. The method applies a feature enhancement function to the CA signals to form an enhanced feature in the CA data set. The method calculates an adaptive sensitivity level and sensitivity limit based on the enhanced feature from one or more beats within the CA data set and automatically iteratively analyzes a beat segment of interest by comparing the beat segment of interest to the current sensitivity level to determine whether one or more R-waves are present within the beat segment of interest.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: April 25, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Fady Dawoud, Fujian Qu, Stuart Rosenberg, Gene A. Bornzin, Jong Gill, Neha Malhotra, Xiaoyi Min
  • Publication number: 20230122269
    Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20230117950
    Abstract: Computer implemented methods and systems are provided that comprise, under control of one or more processors of a medical device, where the one or more processors are configured with specific executable instructions. The methods and systems obtain motion data indicative of at least one of a posture or a respiration cycle; obtain cardiac activity (CA) signals for a series of beats; identify whether a characteristic of interest (COI) from at least a first segment of the CA signals exceeds a COI limit; analyze the motion data to determine whether at least one of the posture or respiration cycle at least in part caused the COI to exceed the COI limit. Based on the analyzing operation, the methods and systems automatically adjust a CA sensing parameter utilized by the medical device to detect R-waves in subsequent CA signals; and detect an arrhythmia based on a presence or absence of one or more of the R-waves in at least a second segment of the CA signals.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Donald Hopper, Luke C. McSpadden, Fujian Qu, Gene A. Bornzin, Sinny Delacroix
  • Publication number: 20230062838
    Abstract: Systems and methods for implanting a lead. The system includes an active guidewire having proximal and distal ends. The distal end includes a guidewire anchor that is configured to be attached to a target SOL. The active guidewire is configured to be utilized to electrically map the target SOI by at least one of delivering stimulation energy through the active guide wire to the target SOI or sensing an evoked response at the target SOI from the guidewire. The system also includes a lead having a lead body with proximal and distal ends and with a lumen extending between the proximal and distal ends. The distal end of the lead body is configured to receive the proximal end of the active guidewire. The lumen is configured to permit the lead body to be advanced over the active guidewire.
    Type: Application
    Filed: November 1, 2022
    Publication date: March 2, 2023
    Inventors: Alexander R. Bornzin, Gene A. Bornzin, Zoltan Somogyi, Wenwen Li, Xiaoyi Min
  • Publication number: 20230035495
    Abstract: Systems and methods for implanting a medical device are provided and include an implantable lead comprising a lead body having a distal end and a proximal end. The implantable lead has electrodes positioned at the distal end and has a lead connector positioned at the proximal end. The lead connector includes lead contacts that are communicatively coupled to the electrodes positioned at the distal end. The lead body has a body outer envelope configured to fit within a lumen of an introducer sheath and the lead connector has a connector outer envelope configured to fit within the lumen of the introducer sheath. A pulse generator has a connector cavity. The lead adaptor is configured to interconnect the implantable lead and the pulse generator. The lead adaptor has an insertable connector that includes mating contacts and an adaptor cavity that includes cavity contacts.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 2, 2023
    Inventors: Alexander R. Bornzin, Gene A. Bornzin, Zoltan Somogyi