Patents by Inventor Geoffrey Howard Goldman

Geoffrey Howard Goldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9223021
    Abstract: An improved method and system for removing time-varying Doppler shifts and the effects of turbulence from data comprising at least one processor operating to estimate the average instantaneous frequency; reduce or remove noise from the state space variables estimates describing the frequency of the target; compensate for the motion of the target to obtain motion compensated data and increase the coherency of the data, and reduce or remove the noise from the state space variables describing the frequency of the target using a filter or smoother. Alternately, the method and system may comprise at least one processor operating to estimate the average instantaneous frequency of the first harmonic of a moving target; the average instantaneous frequency being inputted into an error reduction subroutine; using state space estimates of the frequency, calculating a time warping to remove the effect of the Doppler shift; and focusing the data using a modified PGA.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 29, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Geoffrey Howard Goldman
  • Patent number: 8330650
    Abstract: A radar system, apparatus, and method includes at least one radar transmitter for transmitting an electromagnetic waveform; a receiving antenna comprising a plurality of receiving antenna elements and delay lines, each of the plurality of receiving antenna elements receiving the return signal operatively associated with a predetermined delay line; each delay line having a delay length which produces a different phase delay in the return signal; the different phase delays producing substantially different antenna patterns for the received signal at a given frequency; at least one processor operatively connected to receive data from the plurality of delay lines; the at least one processor operating to analyze the substantially different beam patterns for a given frequency; whereby the processing of the data produces results indicating the presence and location of a target.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: December 11, 2012
    Assignee: The United States of America, as represented by the Secretary of the Army
    Inventor: Geoffrey Howard Goldman
  • Patent number: 8207887
    Abstract: A method and system for processing radar data from a movable platform comprising passing a radar signal through a low noise amplifier; down converting the signal to a lower frequency; filtering out harmonics; sampling using A/D converter at or above Nyquist frequency; determining a scene center; performing a two stage averaging scheme of the received signals with a variable window function based upon the velocity, acceleration of the platform and scene center; coherently averaging N pulses to create an average pulse; performing an inverse Fourier transform; compensating to the scene center by multiplying by a complex exponential based upon GPS and inertial navigational system; summing the average pulses using a low pass filter; repeating the determination of an average pulse for a time period that is less than the Nyquist sample time interval to generate second average pulses; and performing a 2D inverse Fourier transform to obtain SAR image.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 26, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Geoffrey Howard Goldman
  • Publication number: 20110273325
    Abstract: A radar system, apparatus, and method includes at least one radar transmitter for transmitting an electromagnetic waveform; a receiving antenna comprising a plurality of receiving antenna elements and delay lines, each of the plurality of receiving antenna elements receiving the return signal operatively associated with a predetermined delay line; each delay line having a delay length which produces a different phase delay in the return signal; the different phase delays producing substantially different antenna patterns for the received signal at a given frequency; at least one processor operatively connected to receive data from the plurality of delay lines; the at least one processor operating to analyze the substantially different beam patterns for a given frequency; whereby the processing of the data produces results indicating the presence and location of a target.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 10, 2011
    Applicant: U.S. Government as represented by the Secreatry of the Army
    Inventor: GEOFFREY HOWARD GOLDMAN