Patents by Inventor Georg Wolfgang Winkler

Georg Wolfgang Winkler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230038763
    Abstract: Examples described in this disclosure relate to gating a semiconductor layer into a quantum spin Hall insulator state, Certain examples further relate to using quantum spin Hall insulators as topological quantum qubits. Quantum spin Hall systems may rely upon the quantum spin Hall effect by causing a state of a matter to change from a certain phase to an inverted bandgap phase. In one example, the present disclosure relates to a device including a semiconductor layer comprising an active material. The device further includes a gate coupled to the semiconductor layer, where the semiconductor layer is operable in a quantum spin Hall insulator state by using electrons and holes from the active material in response to an application of an electric field to the semiconductor layer via the gate.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 9, 2023
    Inventors: Dmitry PIKULIN, Georg Wolfgang WINKLER, Rafal Maciej RECHCINSKI, Dominik André GRESCH
  • Publication number: 20220299551
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes (a) measuring one or both of a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction, to obtain mapping data and refinement data; (b) finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; and (c) finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Application
    Filed: February 15, 2022
    Publication date: September 22, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Dmitry PIKULIN, Mason L THOMAS, Chetan Vasudeo NAYAK, Roman Mykolayovych LUTCHYN, Bas NIJHOLT, Bernard VAN HECK, Esteban Adrian MARTINEZ, Georg Wolfgang WINKLER, Gijsbertus DE LANGE, John David WATSON, Sebastian HEEDT, Torsten KARZIG
  • Patent number: 11201273
    Abstract: A device comprising: a portion of semiconductor; a portion of superconductor arranged to a enable a topological phase having a topological gap to be induced in a region of the semiconductor by proximity effect; and a portion of a non-magnetic material comprising an element with atomic number Z greater than or equal to 26, arranged to increase the topological gap in the topological region of the semiconductor.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: December 14, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Igorevich Pikulin, Geoffrey Charles Gardner, Raymond Leonard Kallaher, Georg Wolfgang Winkler, Sergei Vyatcheslavovich Gronin, Peter Krogstrup Jeppesen, Michael James Manfra, Andrey Antipov, Roman Mykolayovych Lutchyn
  • Patent number: 11151470
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes measuring a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction to obtain mapping data; finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; measuring a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction in each of the one or more regions of the parameter space, to obtain refinement data; and finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: October 19, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Mason L Thomas, Chetan Vasudeo Nayak, Roman Mykolayovych Lutchyn, Georg Wolfgang Winkler, Sebastian Heedt, Gijsbertus De Lange, Bernard Van Heck, Esteban Adrian Martinez, Lucas Casparis, Torsten Karzig
  • Patent number: 11138354
    Abstract: A computing device, including memory storing a quantum computing device model. The quantum computing device model may include a plurality of quantum computing device components having a respective plurality of actual boundaries, including a boundary between a superconductor and a semiconductor. The computing device may further include a processor configured to receive, via an application-program interface (API), a nonuniform grid having a nonuniform spacing along at least a first spatial dimension. The processor may receive, via the API, a Schrödinger equation including a Hamiltonian having one or more operators. The processor may discretize the quantum computing device model using the nonuniform grid. The processor may compute a finite-difference solution estimate to the Schrödinger equation over the quantum computing device model as discretized with the nonuniform grid. The processor may output the finite-difference solution estimate via the API.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: October 5, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jan Philipp Gukelberger, Andrey Antipov, Georg Wolfgang Winkler, John King Gamble, IV
  • Publication number: 20210279626
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes measuring a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction to obtain mapping data; finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; measuring a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction in each of the one or more regions of the parameter space, to obtain refinement data; and finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 9, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Dmitry PIKULIN, Mason L THOMAS, Chetan Vasudeo NAYAK, Roman Mykolayovych LUTCHYN, Georg Wolfgang WINKLER, Sebastian HEEDT, Gijsbertus DE LANGE, Bernard VAN HECK, Esteban Adrian MARTINEZ, Lucas CASPARIS, Torsten KARZIG
  • Publication number: 20210126181
    Abstract: A semiconductor-superconductor hybrid device comprises a semiconductor, a superconductor, and a barrier between the superconductor and the semiconductor. The device is configured to enable energy level hybridisation between the semiconductor and the superconductor. The barrier is configured to increase a topological gap of the device. The barrier allows for control over the degree of hybridisation between the semiconductor and the superconductor. Further aspects provide a quantum computer comprising the device, a method of manufacturing the device, and a method of inducing topological behaviour in the device.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 29, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Georg Wolfgang Winkler, Roman Mykolayovych Lutchyn, Geoffrey Charles Gardner, Raymond Leonard Kallaher, Sergei Vyatcheslavovich Gronin, Michael James Manfra, Farhad Karimi
  • Publication number: 20210126180
    Abstract: A semiconductor-superconductor hybrid device comprises a semiconductor layer and a superconductor layer. The superconductor layer is arranged over an edge of the semiconductor layer so as to enable energy level hybridisation between the semiconductor layer and the superconductor layer. The semiconductor layer is arranged in a sandwich structure between first and second insulating layers, each insulating layer being in contact with a respective opposed face of the semiconductor layer. This configuration may allow for good control over the geometry of the semiconductor layer and may improve tolerance to manufacturing variations. The device may be useful in a quantum computer. Also provided is a method of manufacturing the device, and a method of inducing topological behaviour in the device.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 29, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Georg Wolfgang Winkler, Roman Mykolayovych Lutchyn, Leonardus Petrus Kouwenhoven, Farhad Karimi
  • Publication number: 20210117512
    Abstract: A computing device, including memory storing a quantum computing device model. The quantum computing device model may include a plurality of quantum computing device components having a respective plurality of actual boundaries, including a boundary between a superconductor and a semiconductor. The computing device may further include a processor configured to receive, via an application-program interface (API), a nonuniform grid having a nonuniform spacing along at least a first spatial dimension. The processor may receive, via the API, a Schrödinger equation including a Hamiltonian having one or more operators. The processor may discretize the quantum computing device model using the nonuniform grid. The processor may compute a finite-difference solution estimate to the Schrödinger equation over the quantum computing device model as discretized with the nonuniform grid. The processor may output the finite-difference solution estimate via the API.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 22, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Jan Philipp GUKELBERGER, Andrey ANTIPOV, Georg Wolfgang WINKLER, John King GAMBLE, IV
  • Publication number: 20210083166
    Abstract: A device comprising: a portion of semiconductor; a portion of superconductor arranged to a enable a topological phase having a topological gap to be induced in a region of the semiconductor by proximity effect; and a portion of a non-magnetic material comprising an element with atomic number Z greater than or equal to 26, arranged to increase the topological gap in the topological region of the semiconductor.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Igorevich Pikulin, Geoffrey Charles Gardner, Raymond Leonard Kallaher, Georg Wolfgang Winkler, Sergei Vyatcheslavovich Gronin, Peter Krogstrup Jeppesen, Michael James Manfra, Andrey Antipov, Roman Mykolayovych Lutchyn
  • Patent number: 10692010
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: June 23, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Patent number: 10665701
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: May 26, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekėnas
  • Publication number: 20200027030
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Publication number: 20200027971
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas