Patents by Inventor George Turkiyyah

George Turkiyyah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8423167
    Abstract: For use in connection with evaluating prosthetic sockets (and other objects) designed and fabricated with computer aided design and manufacturing software, the shape of a socket is accurately scanned and digitized. The scanned data are then compared to either an electronic shape data file, or to the shape of another socket, a positive model of a residual limb (or socket), or a residual limb. Differences detected during the comparison can then be applied to revise the design or fabrication of the socket, to more accurately achieve a desired shape that properly fits the residual limb of a patient and can be used to solve the inverse problem by correcting for observed errors of a specific fabricator before a socket is produced. The digitizing process is implemented using a stylus ball that contacts a surface of the socket to produce data indicating the three-dimensional shape of the socket.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 16, 2013
    Assignee: University of Washington
    Inventors: Joan E. Sanders, Michael R. Severance, Timothy R. Myers, George Turkiyyah, Elizabeth A. Sorenson, Ellen L. Lee
  • Publication number: 20100023149
    Abstract: For use in connection with evaluating prosthetic sockets (and other objects) designed and fabricated with computer aided design and manufacturing software, the shape of a socket is accurately scanned and digitized. The scanned data are then compared to either an electronic shape data file, or to the shape of another socket, a positive model of a residual limb (or socket), or a residual limb. Differences detected during the comparison can then be applied to revise the design or fabrication of the socket, to more accurately achieve a desired shape that properly fits the residual limb of a patient and can be used to solve the inverse problem by correcting for observed errors of a specific fabricator before a socket is produced. The digitizing process is implemented using a stylus ball that contacts a surface of the socket to produce data indicating the three-dimensional shape of the socket.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 28, 2010
    Applicant: University of Washington
    Inventors: Joan E. Sanders, Michael R. Severance, Timothy R. Myers, George Turkiyyah, Elizabeth A. Sorenson, Ellen L. Lee