Patents by Inventor Georgieanna L. Scheuerman

Georgieanna L. Scheuerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6806087
    Abstract: Methods for discovering optimum catalysts and/or reaction conditions for performing endo-or exothermic reactions, in particular gas-to-liquid reactions, are disclosed. A combinatorial approach is used to identify optimum catalysts and/or reaction conditions for performing the reactions. The reactions are performed in the channels of a microchannel reactor. These results can be used directly to optimize large scale reactions performed in a plurality of microchannel reactors, or can be correlated to useful catalysts and reaction conditions for use in large scale reactors by taking into consideration the heat transfer effects in the microchannel reactor and the large scale reactor. The method can advantageously be used to generate a database of combinations of catalyst systems and/or reaction conditions which provide various product streams, such that as market conditions vary and/or product requirements change, conditions suitable for forming desired products can be identified with little or no downtime.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: October 19, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Dennis J. O'Rear, Georgieanna L. Scheuerman
  • Publication number: 20020182735
    Abstract: Methods for discovering optimum catalysts and/or reaction conditions for performing endo-or exothermic reactions, in particular gas-to-liquid reactions, are disclosed. A combinatorial approach is used to identify optimum catalysts and/or reaction conditions for performing the reactions. The reactions are performed in the channels of a microchannel reactor. These results can be used directly to optimize large scale reactions performed in a plurality of microchannel reactors, or can be correlated to useful catalysts and reaction conditions for use in large scale reactors by taking into consideration the heat transfer effects in the microchannel reactor and the large scale reactor. The method can advantageously be used to generate a database of combinations of catalyst systems and/or reaction conditions which provide various product streams, such that as market conditions vary and/or product requirements change, conditions suitable for forming desired products can be identified with little or no downtime.
    Type: Application
    Filed: May 28, 2002
    Publication date: December 5, 2002
    Inventors: Charles L. Kibby, Dennis J. O'Rear, Georgieanna L. Scheuerman
  • Patent number: 6455595
    Abstract: Methods for discovering optimum catalyst systems for the conversion of syngas to higher molecular weight products via Fischer-Tropsch synthesis are disclosed. A combinatorial approach is used to identify combinations of catalyst systems useful for performing the reactions. The combinations of catalyst systems include Fischer-Tropsch catalysts and olefin isomerization catalysts. The method can advantageously be used to generate a database of combinations of catalyst systems and/or reaction conditions that provide various product streams, such that as market conditions vary and/or product requirements change, conditions suitable for forming desired products can be identified with little or no downtime. The catalysts are combined in a logical manner, for example in the form of arrays.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: September 24, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Charles L. Kibby, Georgieanna L. Scheuerman
  • Publication number: 20020011428
    Abstract: A method, and a reactor, for hydroprocessing a hydrocarbon feed stream through multistage moving catalyst beds contained within a single onstream reactor vessel, with separate catalyst addition and withdrawal systems for each of the multistages of moving catalyst beds. The reactor contains two or more different and distinct moving catalyst beds for any hydroprocessing application. The method includes serially passing, without leaving the reactor vessel, at least a partially treated hydrocarbon stream from one hydroconversion reaction zone containing a moving catalyst bed with a first set of catalytic characteristics to another hydroconversion reaction zone containing a moving catalyst bed with a second set of catalytic characteristics that differ in catalytic abilities from the first set of catalytic characteristics.
    Type: Application
    Filed: February 10, 1999
    Publication date: January 31, 2002
    Inventor: GEORGIEANNA L. SCHEUERMAN
  • Patent number: 5916529
    Abstract: A method, and a reactor, for hydroprocessing a hydrocarbon feed stream through multistage moving catalyst beds contained within a single onstream reactor vessel, with separate catalyst addition and withdrawal systems for each of the multistages of moving catalyst beds. The reactor contains two or more different and distinct moving catalyst beds for any hydroprocessing application. The method includes serially passing, without leaving the reactor vessel, at least a partially treated hydrocarbon stream from one hydroconversion reaction zone containing a moving catalyst bed with a first set of catalytic characteristics to another hydroconversion reaction zone containing a moving catalyst bed with a second set of catalytic characteristics that differ in catalytic abilities from the first set of catalytic characteristics.
    Type: Grant
    Filed: April 24, 1996
    Date of Patent: June 29, 1999
    Assignee: Chevron U.S.A. Inc
    Inventor: Georgieanna L. Scheuerman
  • Patent number: 5733440
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: March 31, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5599440
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid (i.e. a mixture of liquid hydrocarbon and a hydrogen-containing gas) at a rate insufficient to levitate or ebullate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion, such as in a large pilot plant run, with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: February 4, 1997
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel, David R. Johnson
  • Patent number: 5472928
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid at a rate insufficient to levitate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed. At the desired flow rate, such catalyst continually flows in a plug-like manner downwardly through the reactor vessel by introducing fresh catalyst at the top of the catalyst bed by laminarly flowing such catalyst in a liquid stream on a periodic or semicontinuous basis.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: December 5, 1995
    Inventors: Georgieanna L. Scheuerman, David R. Johnson, David C. Kramer
  • Patent number: 5302357
    Abstract: On-stream catalyst replacement apparatus for countercurrent upstream flow of a gas and hydrocarbon liquid through a downward moving catalyst bed in a reactor vessel. A mixed feed stream of gas and liquid hydrocarbon components enters a reservoir formed between the lower end of the reactor and a conical screen supporting the lower end of a catalyst bed. A wall across the vessel divides the reservoir into a lower surge chamber for receiving the mixed feed and an upper plenum chamber for separating the components into alternate feed rings of gas and hydrocarbon liquid under the conical screen. The mixed feed enters the plenum chamber through a plurality of tubes extending downwardly from the wall to the same depth in the surge chamber that prevents establishing preferential paths for gas to independently enter the plenum chamber.
    Type: Grant
    Filed: February 8, 1993
    Date of Patent: April 12, 1994
    Assignee: Chevron Research and Technology Co.
    Inventors: David C. Kramer, Bruce E. Stangeland, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel
  • Patent number: 5270018
    Abstract: Apparatus for withdrawing particulate spent catalyst particles from a packed, non-fluidized bed of such particles in contact with a liquid medium within a vessel wherein the apparatus is a withdrawal conduit or pipe which has an inlet that opens within the bottom of the bed and faces generally downwardly so that a first section extends upwardly from the inlet, and a second section extends downwardly, and the spent catalyst particles exits the packed bed through a uniform and continuous flow path opening into a solids recovery vessel whose pressure is controlled to regulate flow of such spent catalyst from the reaction vessel independent of the rate of flow through the withdrawal conduit.
    Type: Grant
    Filed: December 11, 1991
    Date of Patent: December 14, 1993
    Assignee: Chevron Research Company
    Inventor: Georgieanna L. Scheuerman
  • Patent number: 5098230
    Abstract: A method is disclosed for withdrawing particulate spent catalyst particles from a packed, non-fluidized bed of such particles in contact with a liquid medium within a vessel having a withdrawal conduit or pipe which has an inlet that opens within the bottom of the bed and faces generally downwardly so that a first section extends upwardly from the inlet, and a second section extends downwardly, and the spent catalyst particles exits the packed bed through a uniform and continuous flow path opening into a solids recovery vessel whose pressure is controlled to regulate flow of such spent catalyst from the reaction vessel independent of the rate of flow through the withdrawal conduit.
    Type: Grant
    Filed: December 16, 1988
    Date of Patent: March 24, 1992
    Assignee: Chevron Research Company
    Inventor: Georgieanna L. Scheuerman
  • Patent number: 5076908
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid at a rate insufficient to levitate the bed and with catalyst selected by a density, shape and size at a design feed rate of liquids and gas to prevent ebulation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion in a large pilot plant run with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed.
    Type: Grant
    Filed: July 19, 1989
    Date of Patent: December 31, 1991
    Assignee: Chevron Research & Technology Company
    Inventors: Bruce E. Stangeland, David C. Kramer, David S. Smith, James T. McCall, Georgieanna L. Scheuerman, Robert W. Bachtel