Patents by Inventor Georgiy Voronin

Georgiy Voronin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11761062
    Abstract: Polycrystalline diamond constructions are formed from a mixture of diamond grains including a first volume of fine-sized diamond grains, and a second volume of coarse-sized diamond grains. The fine-sized diamond grains are partially graphitized, and the coarse-sized diamond grains are not graphitized. The mixture of diamond grains is subjected to high pressure/high temperature sintering process conditions in the presence of a sintering aid thereby forming polycrystalline diamond. Contact areas between coarse-sized diamond grains in the polycrystalline diamond construction are substantially free of graphite.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 19, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Georgiy Voronin
  • Patent number: 11002081
    Abstract: A cutting element has a thermally stable polycrystalline diamond layer formed on an upper side of a polycrystalline diamond layer. The cutting element has a cutting face opposite the polycrystalline diamond layer, a transition layer on a side of the polycrystalline diamond layer opposite the thermally stable polycrystalline diamond layer, and a non-planar interface between the transition layer and the polycrystalline diamond layer. The non-planar interface has a perimeter exposed around a side surface of the cutting element encircling an interior of the non-planar interface and an uppermost portion of the perimeter is a distance from the cutting face greater than an axial distance between the cutting face and the interior.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: May 11, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Georgiy Voronin
  • Publication number: 20200032590
    Abstract: A cutting element has a thermally stable polycrystalline diamond layer formed on an upper side of a polycrystalline diamond layer and having a cutting face opposite the polycrystalline diamond layer, a transition layer on a side of the polycrystalline diamond layer opposite the thermally stable polycrystalline diamond layer, and a non-planar interface between the transition layer and the polycrystalline diamond layer, the non-planar interface having a perimeter exposed around a side surface of the cutting element and encircling an interior of the non-planar interface, and an uppermost portion of the perimeter being a distance from the cutting face greater than an axial distance between the cutting face and the interior.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 30, 2020
    Inventor: Georgiy Voronin
  • Patent number: 10480252
    Abstract: The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: November 19, 2019
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: J. Daniel Belnap, Georgiy Voronin, Feng Yu, Peter T. Cariveau, Youhe Zhang, Yuelin Shen, Guodong Zhan
  • Patent number: 10456889
    Abstract: A cutting element may be formed by sintering together a plurality of metal carbide grains and a metal binder to form a substrate, forming at least one binder gradient in the substrate, and mounting an abrasive layer to the substrate at an interface. The concentration of metal binder material may decrease along at least one direction to form the at least one binder gradient.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: October 29, 2019
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: John Daniel Belnap, Georgiy Voronin, Peter T. Cariveau
  • Patent number: 10364614
    Abstract: Polycrystalline ultra-hard constructions comprise a polycrystalline ultra-hard material body and two or more support members attached to the body by braze material. The support members include a backside support member and a side support member. The side support member is a one- or two-piece construction, and is positioned circumferentially around and extends axially along the body or both the body and the backside support member such that a working surface of the body remains exposed. The support members can be configured to provide a mechanical attachment or interlocking attachment with the body or another support member. The braze materials used in the construction can be different and selected to enhance the attachment and/or reduce the creation of thermal stress within the construction during assembly. The support members can be selected having different thermal expansion characteristics that also operate to reduce the thermal stress during construction assembly.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: July 30, 2019
    Assignee: Smith International, Inc.
    Inventors: Georgiy Voronin, J. Daniel Belnap
  • Publication number: 20190160536
    Abstract: Polycrystalline diamond constructions are formed from a mixture of diamond grains including a first volume of fine-sized diamond grains, and a second volume of coarse-sized diamond grains. The fine-sized diamond grains are partially graphitized, and the coarse-sized diamond grains are not graphitized. The mixture of diamond grains is subjected to high pressure/high temperature sintering process conditions in the presence of a sintering aid thereby forming polycrystalline diamond. Contact areas between coarse-sized diamond grains in the polycrystalline diamond construction are substantially free of graphite.
    Type: Application
    Filed: June 26, 2017
    Publication date: May 30, 2019
    Applicant: Smith International, Inc.
    Inventor: Georgiy VORONIN
  • Publication number: 20190078390
    Abstract: The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 14, 2019
    Inventors: J. Daniel Belnap, Georgiy Voronin, Feng Yu, Peter T. Cariveau, Youhe Zhang, Yuelin Shen, Guodong Zhan
  • Patent number: 10173299
    Abstract: Diamond bonded constructions include a diamond body comprising intercrystalline bonded diamond and interstitial regions. The body has a working surface and an interface surface, and may be joined to a metallic substrate. The body has a gradient diamond volume content greater about 1.5 percent, wherein the diamond content at the interface surface is less than 94 percent, and increases moving toward the working surface. The body may include a region that is substantially free of a catalyst material otherwise disposed within the body and present in a gradient amount. An additional material may be included within the body and be present in a changing amount. The body may be formed by high-pressure HPHT processing, e.g., from 6,200 MPa to 10,000 MPa, to produce a sintered body having a characteristic diamond volume fraction v. average grain size relationship distinguishable from that of diamond bonded constructions form by conventional-pressure HPHT processing.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: January 8, 2019
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: J. Daniel Belnap, Georgiy Voronin, Feng Yu, Peter Cariveau
  • Patent number: 10119340
    Abstract: The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: November 6, 2018
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: J. Daniel Belnap, Georgiy Voronin, Feng Yu, Peter T. Cariveau, Youhe Zhang, Yuelin Shen, Guodong Zhan
  • Patent number: 9404309
    Abstract: Diamond bonded constructions comprise a polycrystalline diamond body having a matrix phase of bonded-together diamond grains and a plurality of interstitial regions between the diamond grains including a catalyst material used to form the diamond body disposed within the interstitial regions. A sintered thermally stable diamond element is disposed within and bonded to the diamond body, and is configured and positioned to form part of a working surface. The thermally stable diamond element is bonded to the polycrystalline diamond body, and a substrate is bonded to the polycrystalline diamond body. The thermally stable diamond element comprises a plurality of bonded-together diamond grains and interstitial regions, wherein the interstitial regions are substantially free of a catalyst material used to make or sinter the thermally stable diamond element. A barrier material may be disposed over or infiltrated into one or more surfaces of the thermally stable diamond element.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: August 2, 2016
    Assignee: Smith International, Inc.
    Inventors: Georgiy Voronin, J. Daniel Belnap, Feng Yu, Benjamin Randall
  • Publication number: 20160121458
    Abstract: A cutting element may be formed by sintering together a plurality of metal carbide grains and a metal binder to form a substrate, forming at least one binder gradient in the substrate, and mounting an abrasive layer to the substrate at an interface. The concentration of metal binder material may decrease along at least one direction to form the at least one binder gradient.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventors: John Daniel Belnap, Georgiy Voronin, Peter T. Cariveau
  • Publication number: 20160047171
    Abstract: Cutting elements include an ultrahard material body formed at high pressure and high temperature conditions in the absence of catalyzing material to provide a material microstructure comprising a matrix phase of bonded together ultrahard material particles and interstitial regions disposed throughout the matrix phase providing porosity of less than about 6 volume percent. The body may include a substrate attached thereto, and may include an infiltrant material disposed in a population of the interstitial regions. The body may have regions with different porosities, e.g., with a higher porosity region located adjacent a substrate interface and/or along a central region. The body may include more than one infiltrant, each located in different regions. The infiltrant may be introduced into the body during a separate high pressure/high temperature process. The body may include a region which extends a depth from a working surface that is substantially free of any infiltrant.
    Type: Application
    Filed: October 23, 2015
    Publication date: February 18, 2016
    Inventor: Georgiy Voronin
  • Patent number: 9234391
    Abstract: A cutting element having a substrate, an abrasive layer mounted to the substrate at an interface, and a longitudinal axis extending through the abrasive layer and the substrate is disclosed, wherein the substrate has a binder material, a plurality of metal carbide grains bonded together by an amount of the binder material, and at least one binder gradient, and wherein the amount of binder material decreases along at least one direction to form the at least one binder gradient.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: January 12, 2016
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: J. Daniel Belnap, Georgiy Voronin, Peter T. Cariveau
  • Patent number: 9217296
    Abstract: Polycrystalline ultra-hard constructions comprise a polycrystalline ultra-hard material body and two or more support members attached to the body by braze material. The support members include a backside support member and a side support member. The side support member is a one- or two-piece construction, and is positioned circumferentially around and extends axially along the body or both the body and the backside support member such that a working surface of the body remains exposed. The support members can be configured to provide a mechanical attachment or interlocking attachment with the body or another support member. The braze materials used in the construction can be different and selected to enhance the attachment and/or reduce the creation of thermal stress within the construction during assembly. The support members can be selected having different thermal expansion characteristics that also operate to reduce the thermal stress during construction assembly.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: December 22, 2015
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: Georgiy Voronin, J. Daniel Belnap
  • Publication number: 20150343599
    Abstract: Polycrystalline ultra-hard constructions comprise a polycrystalline ultra-hard material body and two or more support members attached to the body by braze material. The support members include a backside support member and a side support member. The side support member is a one- or two-piece construction, and is positioned circumferentially around and extends axially along the body or both the body and the backside support member such that a working surface of the body remains exposed. The support members can be configured to provide a mechanical attachment or interlocking attachment with the body or another support member. The braze materials used in the construction can be different and selected to enhance the attachment and/or reduce the creation of thermal stress within the construction during assembly. The support members can be selected having different thermal expansion characteristics that also operate to reduce the thermal stress during construction assembly.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 3, 2015
    Inventors: Georgiy Voronin, J. Daniel Belnap
  • Patent number: 9193038
    Abstract: Cutting elements include an ultrahard material body formed at high pressure and high temperature conditions in the absence of catalyzing material to provide a material microstructure comprising a matrix phase of bonded together ultrahard material particles and interstitial regions disposed throughout the matrix phase providing porosity of less than about 6 volume percent. The body may include a substrate attached thereto, and may include an infiltrant material disposed in a population of the interstitial regions. The body may have regions with different porosities, e.g., with a higher porosity region located adjacent a substrate interface and/or along a central region. The body may include more than one infiltrant, each located in different regions. The infiltrant may be introduced into the body during a separate high pressure/high temperature process. The body may include a region which extends a depth from a working surface that is substantially free of any infiltrant.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 24, 2015
    Assignee: Smith International Inc.
    Inventor: Georgiy Voronin
  • Publication number: 20140291037
    Abstract: Diamond bonded constructions comprise a body comprising a plurality of bonded together diamond grains with interstitial regions disposed between the grains that are substantially free of the catalyst material used to initially sinter the body. A metallic substrate is attached to the body, and a braze joint is interposed between the body and the substrate. The body is metallized to include a metallic material disposed along a substrate attachment surface in contact with the braze joint, wherein the metallic material is different from the braze joint material. The metallic material may exist within a region of the body extending fully or partially into the body, and/or may exist as a layer extending away from the substrate attachment surface. The body includes a working surface characterized by empty interstitial regions or by interstitial regions filled with an infiltrant material, wherein the infiltrant material is different from the metallizing material.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Peter Cariveau, Georgiy Voronin, J. Daniel Belnap
  • Publication number: 20140250798
    Abstract: Thermally stable polycrystalline constructions include a body having a polycrystalline ultra-hard phase and a plurality of empty voids. The construction includes a backside support member over at least a portion of the backside surface of the body and a sidewall support member over at least a portion of the sidewall surface of the body extending an axial distance along at least a portion of the body and at least partially covering a circumferential surface of the body. The construction has a compressive stress exerted on the body.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: Smith International, Inc.
    Inventors: Georgiy Voronin, J. Daniel Belnap
  • Publication number: 20140215927
    Abstract: Diamond bonded constructions include a diamond body comprising intercrystalline bonded diamond and interstitial regions. The body has a working surface and an interface surface, and may be joined to a metallic substrate. The body has a gradient diamond volume content greater about 1.5 percent, wherein the diamond content at the interface surface is less than 94 percent, and increases moving toward the working surface. The body may include a region that is substantially free of a catalyst material otherwise disposed within the body and present in a gradient amount. An additional material may be included within the body and be present in a changing amount. The body may be formed by high-pressure HPHT processing, e.g., from 6,200 MPa to 10,000 MPa, to produce a sintered body having a characteristic diamond volume fraction v. average grain size relationship distinguishable from that of diamond bonded constructions form by conventional-pressure HPHT processing.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Smith International, Inc.
    Inventors: J. Daniel Belnap, Georgiy Voronin, Feng Yu, Peter Cariveau