Patents by Inventor Gerald T. Mearini

Gerald T. Mearini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9558724
    Abstract: A guitar pick comprises a substrate layer and a diamond film layer or coating. The diamond film layer is composed of chemical vapor deposited diamond, or diamond-like carbon. The diamond film coating or layer is applied to the substrate in one or more layers under intense heat and low pressure. The substrate layer can be composed of at least one of steel, stainless steel, molybdenum, titanium, tungsten, copper, aluminum, tantalum and alloys thereof, silicon, silicon carbide, tungsten carbide, quartz, or sapphire. Coating of the diamond film layer may be achieved by plasma enhanced chemical vapor deposition (PECVD), ion beam deposition (IBD), plasma-assisted deposition, cathodic arc deposition, hot filament chemical vapor deposition (HFCVD), or microwave plasma-assisted chemical vapor deposition (MPCVD).
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 31, 2017
    Inventor: Gerald T. Mearini
  • Publication number: 20160180824
    Abstract: A guitar pick comprises a substrate layer and a diamond film layer or coating. The diamond film layer is composed of chemical vapor deposited diamond, or diamond-like carbon. The diamond film coating or layer is applied to the substrate in one or more layers under intense heat and low pressure. The substrate layer can be composed of at least one of steel, stainless steel, molybdenum, titanium, tungsten, copper, aluminum, tantalum and alloys thereof, silicon, silicon carbide, tungsten carbide, quartz, or sapphire. Coating of the diamond film layer may be achieved by plasma enhanced chemical vapor deposition (PECVD), ion beam deposition (IBD), plasma-assisted deposition, cathodic arc deposition, hot filament chemical vapor deposition (HFCVD), or microwave plasma-assisted chemical vapor deposition (MPCVD).
    Type: Application
    Filed: December 18, 2015
    Publication date: June 23, 2016
    Inventor: Gerald T. Mearini
  • Patent number: 7195797
    Abstract: A vacuum deposition system has been designed to produce thin film based demultiplexers with high throughput and production yields of greater than 25% for use in Dense Wavelength Division Multiplexer (DWDM) systems. The system employs a dense array of high yield fixtures and an ion assisted movable dual electron beam evaporation system. The fixture array increases acceptable yields of narrow band pass filters to 25–75% compared to less than 5% in conventional coating systems used for DWDM. The movable e-beam system allows critical symmetry to be maintained while eliminating significant delays resulting from deposition of two materials from a single electron gun. The vacuum deposition system will enable production of more than 15,000 50–200 GHZ filters which meet specifications for DWDM demultiplexers every 48 hours.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: March 27, 2007
    Assignee: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Patent number: 7037370
    Abstract: The present invention is directed in one aspect to methods of making free-standing, internally-supported, three-dimensional objects having an outer surface comprising a plurality of intersecting facets wherein a sub-set of the intersecting facets have a diamond layer of substantially uniform thickness. The diamond layer may be formed by chemical vapor deposition (CVD) over the surface of a substrate that has been fabricated to form a mold defining the sub-set of intersecting facets. A backing layer may be formed over at least a portion of the exposed diamond layer to enhance the rigidity of the layer when the substrate is removed.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: May 2, 2006
    Inventors: Gerald T. Mearini, James A. Dayton, Jr.
  • Patent number: 6930835
    Abstract: An optical filter using alternating layers of materials with “low” and “high” indices of refraction and deposited with atomic layer control has been developed. The multilayered thin film filter uses, but is not limited to, alternating amorphous layers of atomically controlled Si (n=3.56) as the high index material and diamond-like carbon (DLC, n=2.0) as the low index material. The Si layers are grown with a self-limiting pulsed molecular beam deposition process which results in layer-by-layer growth and thickness control to within one atomic layer. The DLC layers are produced using an ion-based process and made atomically smooth using a modified Chemical Reactive-Ion Surface Planarization (CRISP) process. Intrinsic stress is monitored using an in-situ cantilever-based intrinsic stress optical monitor and adjusted during filter fabrication by deposition parameter modification. The resulting filter has sufficient individual layer thickness control and surface roughness to enable ˜12.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: August 16, 2005
    Assignee: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Patent number: 6893500
    Abstract: A method of constructing optical filters using alternating layers of materials with “low” and “high” indices of refraction and deposited with atomic layer control. The multilayered thin film filter uses, but is not limited to, alternating layers of single crystal, polycrystalline or amorphous materials grown with self-limiting epitaxial deposition processes well known to the semiconductor industry. The deposition process, such as atomic layer epitaxy (ALE), pulsed chemical beam epitaxy (PCB E), molecular layer epitaxy (MLE) or laser molecular beam epitaxy (laser MBE) can result in epitaxial layer by layer growth and thickness control to within one atomic layer. The alternating layers are made atomically smooth using a Chemical Reactive-Ion Surface Planarization (CRISP) process. Intrinsic stress is monitored using an in-situ cantilever based intrinsic stress optical monitor and adjusted during filter fabrication by deposition parameter modification.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: May 17, 2005
    Assignee: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Patent number: 6788841
    Abstract: A reflective optical switch device includes a diamond-like carbon (DLC) heat sink layer disposed adjacent a reflective layer. In one embodiment, the reflective optical switch is a MEMS mirror having a substrate layer, a DLC heat sink layer, which is vapor deposited on the substrate layer, and a reflective layer deposited over the heat sink layer. In another embodiment, the optical switch device is a reflective LC-based switch having a first substrate, a DLC heat sink layer deposited over the first substrate, and an LC medium provided between a reflective electrode layer and a transmissive electrode layer. The DLC heat sink enables rapid dissipation and distribution of laser light induced heat away from the local target area of the reflective surface, thereby reducing deformation of the reflective surface and/or alteration of the optical properties within the local region to enhance performance.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: September 7, 2004
    Assignee: GENVAC Corporation
    Inventors: Gerald T. Mearini, Laszlo A. Takacs
  • Publication number: 20040154526
    Abstract: The present invention is directed in one aspect to methods of making free-standing, internally-supported, three-dimensional objects having an outer surface comprising a plurality of intersecting facets wherein a sub-set of the intersecting facets have a diamond layer of substantially uniform thickness. The diamond layer may be formed by chemical vapor deposition (CVD) over the surface of a substrate that has been fabricated to form a mold defining the sub-set of intersecting facets. A backing layer may be formed over at least a portion of the exposed diamond layer to enhance the rigidity of the layer when the substrate is removed.
    Type: Application
    Filed: February 6, 2004
    Publication date: August 12, 2004
    Inventors: Gerald T. Mearini, James A. Dayton
  • Patent number: 6767475
    Abstract: An oxygen ion process, Chemical Reactive-Ion Surface Planarization (CRISP), has been developed which enables planarization of thin film surfaces at the atomic level. Narrow/broad band filters produced with vacuum deposited multilayered thin films are designed to selectively reflect/transmit light at specific wavelengths. The optical performance is limited by the ability to control the individual layer thickness, the “roughness” of the individual layer surfaces and the stoichiometry of the layers. The process described herein will enable reduction of surface roughness at the interfaces of multilayered thin films to produce atomically smooth surfaces. The application of this process will result in the production of notch filters of less than 0.3 nm full width at half maximum (FWHM) centered at the desired wavelength.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: July 27, 2004
    Assignee: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Patent number: 6686696
    Abstract: A radio frequency magnetron device for generating radio frequency power includes a cathode at least partially formed from a diamond material. An anode is disposed concentrically around the cathode. An electron field is provided radially between the anode and the cathode. First and second oppositely charged pole pieces are operatively connected to the cathode for producing a magnetic field in a direction perpendicular to the electric field. A filament is provided within the electron tube which when heated produces primary electrons. Alternatively, a voltage is applied to the anode which causes primary electrons to emit from the diamond coated cathode. A portion of the primary electrons travel in a circular path and induce radio frequency power. Another portion of the primary electrons spiral back and collide with the cathode causing the emission of secondary electrons. The secondary electron emission sustains operation of the magnetron device once the device has been started.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 3, 2004
    Assignee: Genvac Aerospace Corporation
    Inventors: Gerald T. Mearini, Laszlo A. Takacs
  • Publication number: 20030133645
    Abstract: A reflective optical switch device includes a diamond-like carbon (DLC) heat sink layer disposed adjacent a reflective layer. In one embodiment, the reflective optical switch is a MEMS mirror having a substrate layer, a DLC heat sink layer, which is vapor deposited on the substrate layer, and a reflective layer deposited over the heat sink layer. In another embodiment, the optical switch device is a reflective LC-based switch having a first substrate, a DLC heat sink layer deposited over the first substrate, and an LC medium provided between a reflective electrode layer and a transmissive electrode layer. The DLC heat sink enables rapid dissipation and distribution of laser light induced heat away from the local target area of the reflective surface, thereby reducing deformation of the reflective surface and/or alteration of the optical properties within the local region to enhance performance.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Inventors: Gerald T. Mearini, Laszlo A. Takacs
  • Patent number: 6521149
    Abstract: A method for manufacturing a free-standing solid diamond microchannel plate produces a base structure, including a silicon material, having a backing and a vertical extension. A chemical vapor deposition diamond material is deposited onto the backing. The diamond material is leveled with the vertical extension of the base structure. The silicon backing is removed from the leveled base structure.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: February 18, 2003
    Inventors: Gerald T. Mearini, Laszlo A. Takacs
  • Patent number: 6475355
    Abstract: A method of manufacturing an x-ray target by positioning an x-ray target having an alloy surface and a graphite surface in a sputtering chamber is disclosed. The x-ray target is then coated over the graphite surface with non-hydrogenated amorphous carbon.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 5, 2002
    Assignee: GENVAC Aerospace Corp.
    Inventors: Gerald T. Mearini, Hsiung Chen, Robert E. Kusner, Laszlo A. Takacs
  • Publication number: 20020125827
    Abstract: A radio frequency magnetron device for generating radio frequency power includes a cathode at least partially formed from a diamond material. An anode is disposed concentrically around the cathode. An electron field is provided radially between the anode and the cathode. First and second oppositely charged pole pieces are operatively connected to the cathode for producing a magnetic field in a direction perpendicular to the electric field. A filament is provided within the electron tube which when heated produces primary electrons. Alternatively, a voltage is applied to the anode which causes primary electrons to emit from the diamond coated cathode. A portion of the primary electrons travel in a circular path and induce radio frequency power. Another portion of the primary electrons spiral back and collide with the cathode causing the emission of secondary electrons. The secondary electron emission sustains operation of the magnetron device once the device has been started.
    Type: Application
    Filed: March 8, 2001
    Publication date: September 12, 2002
    Applicant: GENVAC AeroSpace Corporation
    Inventors: Gerald T. Mearini, Laszlo A. Takacs
  • Publication number: 20020034639
    Abstract: A method of manufacturing an x-ray target by positioning an x-ray target having an alloy surface and a graphite surface in a sputtering chamber. The x-ray target is then coated over the graphite surface with non-hydrogenated amorphous carbon.
    Type: Application
    Filed: August 27, 2001
    Publication date: March 21, 2002
    Inventors: Gerald T. Mearini, Hsiung Chen, Robert E. Kusner, Laszlo A. Takacs
  • Publication number: 20020012746
    Abstract: A vacuum deposition system has been designed to produce thin film based demultiplexers with high throughput and production yields of greater than 25% for use in Dense Wavelength Division Multiplexer (DWDM) systems. The system employs a dense array of high yield fixtures and an ion assisted movable dual electron beam evaporation system. The fixture array increases acceptable yields of narrow band pass filters to 25-75% compared to less than 5% in conventional coating systems used for DWDM. The movable e-beam system allows critical symmetry to be maintained while eliminating significant delays resulting from deposition of two materials from a single electron gun. The vacuum deposition system will enable production of more than 15,000 50-200 GHZ filters which meet specifications for DWDM demultiplexers every 48 hours.
    Type: Application
    Filed: July 10, 2001
    Publication date: January 31, 2002
    Applicant: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Publication number: 20020008891
    Abstract: A substrate fixture has been designed, which significantly improves production yield of thin film based demultiplexer filters for use in Dense Wavelength Division Multiplexer (DWDM) systems. The fixture is comprised of a small area disk capable of rotational speeds greater than 1000 rpm with a dedicated concentric thin film quartz crystal thickness monitor and “clam shell” type shutter. The fixture is intended to be used in a vacuum deposition system, designed to perform optical coatings. The high-speed rotation and location of the fixture with respect to the deposition source guarantees coating thickness uniformity on substrates attached to the disk. The concentric quartz crystal thickness monitor (QCM) calibrated to the geometry or the deposition environment guarantees accurate thickness determination over the area of the disk to within 0.01 percent.
    Type: Application
    Filed: July 10, 2001
    Publication date: January 24, 2002
    Applicant: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Publication number: 20020003665
    Abstract: An optical filter using alternating layers of materials with “low” and “high” indices of refraction and deposited with atomic layer control has been developed. The multilayered thin film filter uses, but is not limited to, alternating amorphous layers of atomically controlled Si (n=3.56) as the high index material and diamond-like carbon (DLC, n=2.0) as the low index material. The Si layers are grown with a self-limiting pulsed molecular beam deposition process which results in layer-by-layer growth and thickness control to within one atomic layer. The DLC layers are produced using an ion-based process and made atomically smooth using a modified Chemical Reactive-Ion Surface Planarization (CRISP) process. Intrinsic stress is monitored using an in-situ cantilever-based intrinsic stress optical monitor and adjusted during filter fabrication by deposition parameter modification.
    Type: Application
    Filed: May 24, 2001
    Publication date: January 10, 2002
    Applicant: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Publication number: 20020003664
    Abstract: An optical filter using alternating layers of materials with “low” and “high” indices of refraction and deposited with atomic layer control has been developed. The multilayered thin film filter uses, but is not limited to, alternating layers of single crystal, polycrystalline or amorphous materials grown with self-limiting epitaxial deposition processes well known to the semiconductor industry. The deposition process, such as atomic layer epitaxy (ALE), pulsed chemical beam epitaxy (PCBE), molecular layer epitaxy (MLE) or laser molecular beam epitaxy (laser MBE) can result in epitaxial layer by layer growth and thickness control to within one atomic layer. The alternating layers are made atomically smooth using the patent pending Chemical Reactive-Ion Surface Planarization (CRISP) process. Intrinsic stress is monitored using an in-situ cantilever-based intrinsic stress optical monitor and adjusted during filter fabrication by deposition parameter modification.
    Type: Application
    Filed: May 24, 2001
    Publication date: January 10, 2002
    Applicant: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Publication number: 20010051435
    Abstract: An oxygen ion process, Chemical Reactive-Ion Surface Planarization (CRISP), has been developed which enables planarization of thin film surfaces at the atomic level. Narrow/broad band filters produced with vacuum deposited multilayered thin films are designed to selectively reflect/transmit light at specific wavelengths. The optical performance is limited by the ability to control the individual layer thickness, the “roughness” of the individual layer surfaces and the stoichiometry of the layers. The process described herein will enable reduction of surface roughness at the interfaces of multilayered thin films to produce atomically smooth surfaces. The application of this process will result in the production of notch filters of less than 0.3 nm full width at half maximum (FWHM) centered at the desired wavelength.
    Type: Application
    Filed: May 24, 2001
    Publication date: December 13, 2001
    Applicant: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs