Patents by Inventor Gerard Antkowiak

Gerard Antkowiak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950846
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. Illumination points are arranged in three rings concentrically around an instrument axis; and the three rings include a first ring, a second ring and a third ring and the illumination points on the first ring and the third ring are rotated in relation to the illumination points on the second ring such that each of the illumination points on the first ring is on a common radial with one of the illumination points on the third ring and each of the illumination points on the second ring is not on the common radial.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20220400947
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: June 29, 2022
    Publication date: December 22, 2022
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Publication number: 20220331042
    Abstract: A slit projector for generating slit illumination in an eye, including a light source, a slit forming unit and an imaging optical unit along a beam path. The invention facilitates improved freedom to operate in the treatment field. The slit projector includes a mirror arranged between the slit forming unit and the imaging optical unit. A corresponding positioning apparatus facilitates aligning the slit illumination in the eye for a therapy system with a surgical microscope and a slit projector. The positioning apparatus includes a holding element and a fastening element, which can be connected to the surgical microscope and the slit projector, respectively, and a pivoting element including a first connection, by use of which the pivoting element and the holding element are movably connected, and a second connection, by use of which the pivoting element and the fastening element are movably connected.
    Type: Application
    Filed: September 8, 2020
    Publication date: October 20, 2022
    Applicant: Carl Zeiss Meditec AG
    Inventors: Beate BÖHME, Gerard ANTKOWIAK, Dietmar STEINMETZ, Jens KÜHNEMUND, Karsten FESTAG
  • Publication number: 20220296418
    Abstract: The claimed embodiments relate to methods for characterizing a laser beam (24) of a laser processing system (30). The method includes a) providing an aperture arrangement (10) with a plurality of apertures (14) in a work plane (300) of the laser processing system (30) such that the apertures (14) extend within the work plane (300). The method also includes b) scanning the laser beam (24) along a scanning direction (200) parallel to the work plane (300) across the aperture arrangement (10) in such a way that the laser beam (24) at least partially sweeps over the apertures (14).
    Type: Application
    Filed: September 7, 2020
    Publication date: September 22, 2022
    Inventors: Christian Deutsch, Gerard Antkowiak, Martin Hacker
  • Patent number: 11399714
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 2, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20200345228
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: June 26, 2020
    Publication date: November 5, 2020
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Patent number: 10694941
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: June 30, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20170296047
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: May 1, 2017
    Publication date: October 19, 2017
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Patent number: 9649027
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 16, 2017
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20150238078
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 27, 2015
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Patent number: 9044164
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 2, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 8967808
    Abstract: An ophthalmological measuring system, for obtaining biometric data of an eye, provided with the necessary calibration and check devices for monitoring the functionality and the calibration status. The ophthalmological measuring system includes an illumination source for illuminating an eye with light and with a sensor for recording and analyzing back-scattered or reflected light components and a controller. At least one calibration and check system integrated in the ophthalmological measuring system for monitoring the functional and calibration status is provided. A device is also provided which houses the calibration and test structures and which reads off the individual physical data therefrom by an interface. The ophthalmological measuring system is in particular provided for determining biometrical data but can also be used for ophthalmological, dermatological or other devices which require calibration and/or functional checking at regular intervals.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 3, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gerard Antkowiak, Martin Hacker, Ingo Koschmieder, Roland Bergner, Ralf Ebersbach, Thomas Pabst, Eberhard Hofmann, Michael Guentzschel, Steffen Dubnack
  • Patent number: 8845097
    Abstract: An ophthalmological measuring system for determining distances and/or for tomographic imaging of ocular structures, based on an OCT method. The measuring system includes a light source with a spectral centroid (?), an interferometric measuring device, a scanner system, which in addition to the lateral deflection of the sample beam also has axial modulations with a frequency (f) in the sample arm, and a control and evaluation unit. The scanner performs a lateral, two-dimensional deflection of the sample beam with the aid of one or even two separate mirror elements and can in particular have axial modulation amplitudes zM>>?/2. The system can also be used for scanner systems in other fields that use an OCT method, in particular a swept-source OCT method.
    Type: Grant
    Filed: July 2, 2011
    Date of Patent: September 30, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Thomas Pabst, Ralf Ebersbach, Gerard Antkowiak
  • Publication number: 20140268057
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 8736935
    Abstract: An optical deflection unit for targeted radiation, e.g., produced by laser or superluminescent diodes, in scanning, ophthalmological measuring and therapy systems, comprises a deflection mirror, a position sensor and a control unit, which form a control circuit for minimizing the deviation of the actual positions, detected by the position sensor, from the desired positions of the deflection mirror, whereby the optical deflection unit comprises a deflection mirror, oscillatingly movable by means of non-contacting electromagnetic drives around at least one rotation axis, and which is positioned in the direction of the, at least, one rotation axis between at least two bearings. The optical deflection unit is designed may also be used for beam guidance in high and ultrahigh vacuum installations, such as UV and EUV exposure installations for semiconductor lithography.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gerard Antkowiak, Thomas Pabst, Ralf Ebersbach, Heino Weigand, Martin Hacker
  • Patent number: 8690330
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 8, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Publication number: 20130120711
    Abstract: An ophthalmological measuring system for determining distances and/or for tomographic imaging of ocular structures, based on an OCT method. The measuring system includes a light source with a spectral centroid (?), an interferometric measuring device, a scanner system, which in addition to the lateral deflection of the sample beam also has axial modulations with a frequency (f) in the sample arm, and a control and evaluation unit. The scanner performs a lateral, two-dimensional deflection of the sample beam with the aid of one or even two separate mirror elements and can in particular have axial modulation amplitudes zM>>?/2. The system can also be used for scanner systems in other fields that use an OCT method, in particular a swept-source OCT method.
    Type: Application
    Filed: July 2, 2011
    Publication date: May 16, 2013
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Martin Hacker, Thomas Pabst, Ralf Ebersbach, Gerard Antkowiak
  • Patent number: 8388135
    Abstract: An ophthalmological biometric or image-producing system and method for detection and analysis of measurement data including a measurement arrangement with an illumination unit for illuminating the eye with at least one measurement beam, a signal detection unit for the detection of the light portions scattered or reflected back from the eye, a central control unit with an output unit, and a pattern generating unit which includes an optical scan unit, a control unit as well as a position sensor for measuring the realized deflections of the optical scan unit, whereby control unit, optical scan unit and position sensor can form a control circuit. Thereby, the position sensor, except for the connection within the possible control circuit, includes a connection to a unit of the measurement arrangement for optimizing measurement value logging or to the central control unit for correcting the biometric measurements or tomograms.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: March 5, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Thomas Pabst, Ralf Ebersbach, Gerard Antkowiak, Wilfried Bissmann, Matthias Reich
  • Publication number: 20110299038
    Abstract: An ophthalmological measuring system, for obtaining biometric data of an eye, provided with the necessary calibration and check devices for monitoring the functionality and the calibration status. The ophthalmological measuring system includes an illumination source for illuminating an eye with light and with a sensor for recording and analyzing back-scattered or reflected light components and a controller. At least one calibration and check system integrated in the ophthalmological measuring system for monitoring the functional and calibration status is provided. A device is also provided which houses the calibration and test structures and which reads off the individual physical data therefrom by an interface. The ophthalmological measuring system is in particular provided for determining biometrical data but can also be used for ophthalmological, dermatological or other devices which require calibration and/or functional checking at regular intervals.
    Type: Application
    Filed: November 4, 2009
    Publication date: December 8, 2011
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Gerard Antkowiak, Martin Hacker, Ingo Koschmieder, Roland Bergner, Ralf Ebersbach, Thomas Pabst, Eberhard Hofmann, Michael Guentzschel, Steffen Dubnack
  • Publication number: 20110255054
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Application
    Filed: December 21, 2009
    Publication date: October 20, 2011
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder