Patents by Inventor Gerhard Fürter

Gerhard Fürter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180259856
    Abstract: An optical projection unit includes first and second optical element modules. The first optical element module includes a first housing unit and a first optical element received within the first housing unit and having an optically used first region defining a first optical axis. The second optical element module is located adjacent to the first optical element module and includes a second optical element which defines a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is laterally offset and/or inclined with respect to the first housing axis. The first housing axis is substantially collinear with the second optical axis.
    Type: Application
    Filed: February 8, 2018
    Publication date: September 13, 2018
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Patent number: 9891535
    Abstract: An optical projection unit includes first and second optical element modules. The first optical element module includes a first housing unit and a first optical element received within the first housing unit and having an optically used first region defining a first optical axis. The second optical element module is located adjacent to the first optical element module and includes a second optical element which defines a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is laterally offset and/or inclined with respect to the first housing axis. The first housing axis is substantially collinear with the second optical axis.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: February 13, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Publication number: 20170219929
    Abstract: An optical projection unit includes first and second optical element modules. The first optical element module includes a first housing unit and a first optical element received within the first housing unit and having an optically used first region defining a first optical axis. The second optical element module is located adjacent to the first optical element module and includes a second optical element which defines a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is laterally offset and/or inclined with respect to the first housing axis. The first housing axis is substantially collinear with the second optical axis.
    Type: Application
    Filed: January 23, 2017
    Publication date: August 3, 2017
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Patent number: 9557653
    Abstract: An optical projection unit includes first and second optical element modules. The first optical element module includes a first housing unit and a first optical element received within the first housing unit and having an optically used first region defining a first optical axis. The second optical element module is located adjacent to the first optical element module and includes a second optical element which defines a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is laterally offset and/or inclined with respect to the first housing axis. The first housing axis is substantially collinear with the second optical axis.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: January 31, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Publication number: 20150323873
    Abstract: An optical projection unit includes first and second optical element modules. The first optical element module includes a first housing unit and a first optical element received within the first housing unit and having an optically used first region defining a first optical axis. The second optical element module is located adjacent to the first optical element module and includes a second optical element which defines a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is laterally offset and/or inclined with respect to the first housing axis. The first housing axis is substantially collinear with the second optical axis.
    Type: Application
    Filed: July 7, 2015
    Publication date: November 12, 2015
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Patent number: 9104016
    Abstract: An optical projection system for a microlithography system includes a light path, a first lens unit receiving a first part of the light path, a second lens unit receiving a second part of the light path, and a support unit supporting the first and second lens units. The first and second lens units are elongated lens units including a plurality of lenses. The support unit includes a housing receiving a third part of the light path and enclosing a reflective element. The housing includes first and second interfaces. The first interface is a first support interface supporting the first lens unit. The second interface is a second support interface supporting the second lens unit at a location substantially opposite to the first interface.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: August 11, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Patent number: 8873151
    Abstract: An illumination system of a microlithographic exposure apparatus comprises a condenser for transforming a pupil plane into a field plane. The condenser has a lens group that contains a plurality of consecutive lenses. These lenses are arranged such that a light bundle focused by the condenser on an on-axis field point converges within each lens of the lens group. At least one lens of the lens group has a concave surface. The illumination system may further comprise a field stop objective that at least partly corrects a residual pupil aberration of the condenser.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: October 28, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Sohmer, Aurelian Dodoc, Heiko Feldmann, Wilhelm Ulrich, Gerhard Fuerter, Rafael Egger, Artur Moegele, Michael Raum
  • Patent number: 8300210
    Abstract: An optical projection unit comprising a first optical element module and at least one second optical element module is provided. The first optical element module comprises a first housing unit and at least a first optical element, the first optical element being received within the first housing unit and having an optically used first region defining a first optical axis. The at least one second optical element module is located adjacent to the first optical element module and comprises at least one second optical element, the second optical element defining a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is at least one of laterally offset and inclined with respect to the first housing axis. Furthermore, the first housing axis is substantially collinear with the second optical axis.
    Type: Grant
    Filed: October 1, 2005
    Date of Patent: October 30, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Patent number: 7697211
    Abstract: The invention features a system for microlithography that includes a mercury light source configured to emit radiation at multiple mercury emission lines, a projection objective positioned to receive radiation emitted by the mercury light source, and a stage configured to position a wafer relative to the projection objective. During operation, the projection objective directs radiation from the light source to the wafer, where the radiation at the wafer includes energy from more than one of the emission lines. Optical lens systems for use in said projection objective comprise four lens groups, each having two lenses comprising silica, the first and second lens groups on one hand and the third and fourth lens groups on the other hand are positioned symmetrically with respect to a plane perpendicular to the optical axis of said lens system.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 13, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Aurelian Dodoc, Johannes Zellner, Heiko Feldmann, Wilhelm Ulrich, Holger Walter, Ulrich Loering, Daniel Kraehmer, Gerhard Fuerter
  • Publication number: 20090174874
    Abstract: An optical projection unit comprising a first optical element module and at least one second optical element module is provided. The first optical element module comprises a first housing unit and at least a first optical element, the first optical element being received within the first housing unit and having an optically used first region defining a first optical axis. The at least one second optical element module is located adjacent to the first optical element module and comprises at least one second optical element, the second optical element defining a second optical axis of the optical projection unit. The first housing unit has a central first housing axis and an outer wall extending in a circumferential direction about the first housing axis. The first optical axis is at least one of laterally offset and inclined with respect to the first housing axis. Furthermore, the first housing axis is substantially collinear with the second optical axis.
    Type: Application
    Filed: October 1, 2005
    Publication date: July 9, 2009
    Inventors: Johannes Rau, Armin Schoeppach, Bernhard Gellrich, Jens Kugler, Martin Mahlmann, Bernhard Geuppert, Thomas Petasch, Gerhard Fuerter
  • Patent number: 7511886
    Abstract: An optical beam transformation system has a sequence of optical elements arranged along an optical axis of the optical beam transformation system and designed for transforming an entrance light distribution striking an entrance surface of the optical beam transformation system into an exit light distribution emerging from an exit surface of the optical beam transformation system by radial redistribution of light intensity. The optical elements include a transformation element causing a radial redistribution of light intensity and having a transformation surface inclined to the optical axis and causing a polarization-selective reflection of a light distribution incident on the transformation surface according to an efficiency symmetry characteristic for the transformation surface.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 31, 2009
    Assignee: Carl Zeiss SMT AG
    Inventors: Joerg Schultz, Markus Deguenther, Markus Brotsack, Gerhard Fuerter, Wolfgang Singer, Manfred Maul, Alexander Kohl, Damian Fiolka
  • Publication number: 20090080086
    Abstract: The invention features a system for microlithography that includes a mercury light source configured to emit radiation at multiple mercury emission lines, a projection objective positioned to receive radiation emitted by the mercury light source, and a stage configured to position a wafer relative to the projection objective. During operation, the projection objective directs radiation from the light source to the wafer, where the radiation at the wafer includes energy from more than one of the emission lines. Optical lens systems for use in said projection objective comprise four lens groups, each having two lenses comprising silica, the first and second lens groups on one hand and the third and fourth lens groups on the other hand are positioned symmetrically with respect to a plane perpendicular to the optical axis of said lens system.
    Type: Application
    Filed: October 23, 2008
    Publication date: March 26, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: David R. Shafer, Aurelian Dodoc, Johannes Zellner, Heiko Feldmann, Wilhelm Ulrich, Holger Walter, Ulrich Loering, Daniel Kraehmer, Gerhard Fuerter
  • Patent number: 7405808
    Abstract: An optical system, particularly an illumination system, of a microlithographic projection exposure apparatus contains at least one plane reflecting surface for folding the beam path. The at least one reflecting surface is arranged with respect to an optical axis of the optical system such that the intensity ratio between two mutually perpendicular polarization directions is at least substantially preserved for an axially parallel light ray deviated by the at least one reflecting surface. In accordance with a second aspect, the at least one reflecting surface is arranged such that a maximum effect on the polarization of the projection light is achieved, so as to be able to compensate for polarization dependencies which occur in other components of the illumination system.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 29, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Toralf Gruner, Michael Totzeck, Damian Fiolka, Wilhelm Ulrich, Gerhard Fuerter
  • Publication number: 20080049320
    Abstract: A projection objective for microlithography for imaging a pattern arranged in the object plane of the projection objective into the image plane of the projection objective has at least one polarization splitter device that is operated only once in transmission or reflection. By using this device, polarization-dependent differences in the intensity and response of the light passing through the objective, which lead to a worsening of the imaging quality of the projection objective, can largely be avoided.
    Type: Application
    Filed: September 4, 2007
    Publication date: February 28, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Wilhelm Ulrich, Gerhard Fuerter, Michael Gerhard
  • Patent number: 7271876
    Abstract: A projection objective for microlithography for imaging a pattern arranged in the object plane of the projection objective into the image plane of the projection objective has at least one polarization splitter device that is operated only once in transmission or reflection. By using this device, polarization-dependent differences in the intensity and response of the light passing through the objective, which lead to a worsening of the imaging quality of the projection objective, can largely be avoided.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: September 18, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Wilhelm Ulrich, Gerhard Fuerter, Michael Gerhard
  • Publication number: 20060146384
    Abstract: An optical beam transformation system, which can be designed to be utilized in an illuminating system of a microlithograpic projection exposure apparatus, has a sequence of optical elements arranged along an optical axis of the optical beam transformation system and designed for transforming an entrance light distribution striking an entrance surface of the optical beam transformation system into an exit light distribution emerging from an exit surface of the optical beam transformation system by radial redistribution of light intensity. The optical elements include at least one transformation element causing a radial redistribution of light intensity and having at least one transformation surface inclined to the optical axis and causing a polarization-selective reflection of a light distribution incident on the transformation surface according to an efficiency symmetry characteristic for the transformation surface.
    Type: Application
    Filed: November 14, 2005
    Publication date: July 6, 2006
    Inventors: Joerg Schultz, Markus Deguenther, Markus Brotsack, Gerhard Fuerter, Wolfgang Singer, Manfred Maul, Alexander Kohl, Damian Fiolka
  • Patent number: 6985286
    Abstract: A projection exposure lens system has an object side catadioptric system, and intermediate image and a refractive lens system. The refractive lens system from its intermediate image side and in the direction of its image plane has a first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power, a fourth lens group of negative refractive power, and a fifth lens group of positive refractive power.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: January 10, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Helmut Beierl, Gerhard Fürter, Karl-Heinz Schuster, Wilhelm Ulrich
  • Publication number: 20050152046
    Abstract: An optical system, particularly an illumination system, of a microlithographic projection exposure apparatus contains at least one plane reflecting surface for folding the beam path. The at least one reflecting surface is arranged with respect to an optical axis of the optical system such that the intensity ratio between two mutually perpendicular polarization directions is at least substantially preserved for an axially parallel light ray deviated by the at least one reflecting surface. In accordance with a second aspect, the at least one reflecting surface is arranged such that a maximum effect on the polarization of the projection light is achieved, so as to be able to compensate for polarization dependencies which occur in other components of the illumination system.
    Type: Application
    Filed: December 16, 2004
    Publication date: July 14, 2005
    Inventors: Toralf Gruner, Michael Totzeck, Damian Fiolka, Wilhelm Ulrich, Gerhard Fuerter
  • Publication number: 20050134826
    Abstract: A projection objective for microlithography for imaging a pattern arranged in the object plane of the projection objective into the image plane of the projection objective has at least one polarization splitter device that is operated only once in transmission or reflection. By using this device, polarization-dependent differences in the intensity and response of the light passing through the objective, which lead to a worsening of the imaging quality of the projection objective, can largely be avoided.
    Type: Application
    Filed: August 17, 2004
    Publication date: June 23, 2005
    Inventors: Wilhelm Ulrich, Gerhard Fuerter, Michael Gerhard
  • Patent number: RE40743
    Abstract: A projection exposure system for microlithography includes an illuminating system (2), a reflective reticle (5) and reduction objectives (71, 72). In the reduction objective (71, 72), a first beam splitter cube (3) is provided which superposes the illuminating beam path (100) and the imaging beam path (200). In order to obtain an almost telecentric entry at the reticle, optical elements (71) are provided between beam splitter cube (3) and the reflective reticle (5). Advantageously, the reduction objective is a catadioptric objective having a beam splitter cube (3) whose fourth unused side can be used for coupling in light. The illuminating beam path (100) can also be coupled in with a non-parallel beam splitter plate. The illuminating beam path is refractively corrected in passthrough to compensate for aberrations via the special configuration of the rear side of the beam splitter plate.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: June 16, 2009
    Assignee: Carl Zeiss SMT AG
    Inventors: Gerhard Fuerter, Christian Wagner, Uwe Goedecke, Henriette Mueller