Patents by Inventor Gerhard Kleinszig

Gerhard Kleinszig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10653386
    Abstract: An apparatus and a method are provided for positioning an x-ray machine having an x-ray source and a detector. A second X-ray image is recorded once an x-ray apparatus has been positioned by using information of an alignment point in a first x-ray image.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: May 19, 2020
    Assignee: Siemens Healthcare GMBH
    Inventors: Alexander Gemmel, Gerhard Kleinszig, Wei Wei, Markus Weiten
  • Publication number: 20200113534
    Abstract: Evaluating a reliability of a computed tomography (CT) volume image includes acquiring a first CT volume image and a modified CT volume image that are reconstructed from scanned projection images. From the first CT volume image and the modified CT volume image, digitally reconstructed X-ray images are then calculated. A respective similarity with a corresponding one of the scanned projection images is then determined. Based on a comparison of these similarities with one another, a reliability of the CT volume images is then evaluated.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 16, 2020
    Inventors: Peter Fischer, Alexander Gemmel, Gerhard Kleinszig, Björn Kreher, Holger Kunze, Jessica Magaraggia, Stefan Schneider, Markus Weiten
  • Publication number: 20190392582
    Abstract: A method is provided for operating a medical imaging device when performing an imaging examination. In order to allow an improved preparation of images in the context of such an imaging examination, the method includes: providing an original image of a body region; recording an updated image of the body region; and generating a three-dimensional subsequent image from the original image and from the updated image using a previously trained artificial neural network.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 26, 2019
    Inventors: Alexander Gemmel, Gerhard Kleinszig, Björn Kreher, Holger Kunze, Jessica Magaraggia, Stefan Schneider, Markus Weiten
  • Patent number: 10413367
    Abstract: The invention describes a method of performing intraoperative navigation during a surgical procedure, which method comprises the steps of arranging a video imaging device on a radioscopic imaging apparatus; obtaining an initial radioscopic image of a target and identifying a desired trajectory in a target; determining a first position of the radioscopic imaging apparatus relative to the target for which a central image axis of a radioscopic imaging unit is aligned with the desired trajectory; positioning the radioscopic imaging apparatus to align a central image axis of the video imaging device with the desired trajectory; and showing a live video feed of the surgical procedure on a monitor to track the position of a surgical implement relative to the desired trajectory.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 17, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Alexander Gemmel, Gerhard Kleinszig, Wei Wei, Markus Weiten, Christoph Tilgener
  • Patent number: 10390886
    Abstract: A framework for pedicle screw positioning is described herein. In accordance with one aspect, the framework segments at least one vertebra of interest in image data. The framework then automatically determines a pedicle region within the segmented vertebra of interest, and a safe region within the segmented vertebra of interest. An optimal insertion path passing through the pedicle region may then be generated within the safe region.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 27, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Mingzhong Li, Shu Liao, Fitsum Aklilu Reda, Yiqiang Zhan, Xiang Sean Zhou, Gerhard Kleinszig
  • Patent number: 10368946
    Abstract: A method for determining the location, in a coordinate system, of a target position for an invasive medical procedure on a patient. An entry mark that defines the coordinate system and indicates an entry position for the procedure is affixed to the patient. A site marker, which can be identified in a radioscopy image, is fixed in a known relative location in the coordinate system. At least two 2D radioscopy images of the patient, which both depict the respective site marker and the target position, are recorded from different recording directions. The location of the target position in the coordinate system is determined from the representation of the target position and from the representation of the site marker in the 2D radioscopy images and from the relative location of the site marker in the coordinate system.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: August 6, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rainer Graumann, Gerhard Kleinszig, Martin Ringholz
  • Patent number: 10278726
    Abstract: A navigation aid for introducing an elongate medical penetration element into a patient. An X-ray image, containing a target region for the penetration element in a desired target position in a patient, is superimposed in alignment with video sequence images, containing at least in part the penetration element, to form a combination image sequence. The penetration element is captured in a start position and a desired penetration course of the penetration element at least to the target region of the penetration element in a desired target position, is visually displayed in the combination image sequence. A penetration element, such as a medical implant and/or instrument, in particular a K-wire (Kirschner wire), may carry a number of markers, such as additional bodies, coatings, elevations, and/or depressions, said markers altering a light reflection, are situated on and/or at and/or in the penetration element.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: May 7, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Karl Barth, Rainer Graumann, Gerhard Kleinszig, Wei Wei
  • Publication number: 20190117180
    Abstract: A method for determining an alignment between at least two bone parts of an elongated bone system of a patient includes recording a plurality of partially spatially overlapping projection images by a recording system of an x-ray device during a translational movement of the x-ray device or the recording system in a direction of or parallel to a longitudinal axis of the bone system. Tomosynthesis image data of the bone parts is reconstructed from the recorded projection images, and an alignment angle between the at least two bone parts is determined or estimated at least partially based on the reconstructed tomosynthesis image data and/or the plurality of projection images.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 25, 2019
    Inventors: Alexander Gemmel, Gerhard Kleinszig, Björn Kreher, Benedict Swartman, Wei Wei, Markus Weiten, Qiao Yang
  • Patent number: 10182776
    Abstract: A system for displaying an image includes at least one x-ray source for emitting radiation, a detector for acquiring the radiation emitted by the radiation source for generating an x-ray image, the detector being disposed opposite the radiation source in relation to an object to be examined, a computer unit for performing computational operations, a display device for displaying x-ray images acquired by the detector and at least one data acquisition unit for acquiring surface information of the object to be examined. The data acquisition unit is disposed on the detector side and the computer unit is configured to correlate the data acquired by the detector-side data acquisition unit with the x-ray image.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: January 22, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Karl Barth, Adrian Egli, Rainer Graumann, Adrian John, Gerhard Kleinszig, Wei Wei
  • Patent number: 10165998
    Abstract: A method and a system for determining an angle between two parts of a bone that are twisted relative to one another about the axis of a bone shaft. The system is particularly suitable for determining the antetorsion angle of a femur. In order to determine an antetorsion angle of a bone easily intraoperatively, a method with the following steps is proposed: establishing the position of a first orientation feature assigned to a first part of the bone, in particular a femoral neck axis, using an imaging method, establishing the position of a second orientation feature assigned to a second part of the bone, in particular a condyle tangent or a condyle plane, using an imaging method, and determining the angle, in particular the femoral antetorsion angle, from the positions of the two orientation features.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: January 1, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Karl Barth, Alexander Gemmel, Gerhard Kleinszig, Wei Wei, Markus Weiten
  • Publication number: 20180250076
    Abstract: In a method of image support for a person carrying out a minimally invasive procedure with an instrument in a procedure site of a patient, one two-dimensional X-ray image respectively of the procedure site is recorded by an X-ray apparatus in at least two recording geometries implementing different projection directions and chosen specific to the procedure, in particular by the person. A three-dimensional model data set of the procedure region is reconstructed by iterative reconstruction from the X-ray images. At least one two-dimensional supporting image corresponding to one of the recording geometries is determined by incorporating at least one item of further information by re-projection of the model data set supplemented by the further information and is displayed for the user.
    Type: Application
    Filed: February 28, 2018
    Publication date: September 6, 2018
    Inventors: ALEXANDER GEMMEL, BJOERN KREHER, GERHARD KLEINSZIG, MARKUS WEITEN
  • Patent number: 10022098
    Abstract: A method of generating a preview of at least one low-dose x-ray image includes the followings steps: obtaining an initial volumetric representation of a patient from an x-ray device; creating at least one x-ray image projection from the initial volumetric representation; injecting correlated noise into at least one of the x-ray image projections; and processing the noise-injected x-ray image projections to create at least one preview of a patient-specific low-dose x-ray for showing to a user. There are also described a device for generating at least one preview of a low-dose x-ray image, a corresponding imaging system, and a non-transitory computer readable medium.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: July 17, 2018
    Assignees: Siemens Aktiengesellschaft, The Johns Hopkins University
    Inventors: Gerhard Kleinszig, Jeffrey Siewerdsen, Sebastian Vogt, Adam Wang
  • Publication number: 20180008217
    Abstract: The disclosure relates to a mobile X-ray device having an equipment cart that is movable on wheels and has a lifting device on which a support assembly is arranged. A C-arm is mounted to the support assembly so as to be displaceable along the circumference of the support assembly, wherein the C-arm has an X-ray source and an X-ray receiver arranged opposite the X-ray source. In order to simplify the handling of a mechanical zoom on mobile X-ray devices, a motion controller is provided by which, in any given pose of the C-arm, a movement of the C-arm is controlled in such a way that the central axis extending between X-ray source and X-ray receiver is fixed in space.
    Type: Application
    Filed: June 27, 2017
    Publication date: January 11, 2018
    Inventors: Alexander Gemmel, Gerhard Kleinszig, Wei Wei, Markus Weiten
  • Publication number: 20170340394
    Abstract: The invention describes a method of performing intra-operative navigation during a surgical procedure, which method comprises the steps of arranging a video imaging device on a radioscopic imaging apparatus; obtaining an initial radioscopic image of a target and identifying a desired trajectory in a target; determining a first position of the radioscopic imaging apparatus relative to the target for which a central image axis of a radioscopic imaging unit is aligned with the desired trajectory; positioning the radioscopic imaging apparatus to align a central image axis of the video imaging device with the desired trajectory; and showing a live video feed of the surgical procedure on a monitor to track the position of a surgical implement relative to the desired trajectory.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: ALEXANDER GEMMEL, GERHARD KLEINSZIG, WEI WEI, MARKUS WEITEN, CHRISTOPH TILGENER
  • Publication number: 20170290559
    Abstract: An apparatus and a method are provided for positioning an x-ray machine having an x-ray source and a detector. A second X-ray image is recorded once an x-ray apparatus has been positioned by using information of an alignment point in a first x-ray image.
    Type: Application
    Filed: September 16, 2015
    Publication date: October 12, 2017
    Applicant: Siemens Healthcare GMBH
    Inventors: ALEXANDER GEMMEL, GERHARD KLEINSZIG, WEI WEI, MARKUS WEITEN
  • Publication number: 20170281109
    Abstract: During the generation of a panoramic x-ray recording, the use of semi-transparent x-ray screens allows the patient's x-ray exposure to be reduced when partial x-ray images are created, in spite of relatively large overlapping areas between the partial x-ray images.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Inventors: OLIVIER ECABERT, ALEXANDER GEMMEL, GERHARD KLEINSZIG, BIRGI TAMERSOY
  • Patent number: 9763599
    Abstract: A method for repositioning a mobile imaging system includes: a) capturing an image recording of at least one optical marker as a reference variable which is disposed close to an examination and/or treatment area of an object, b) capturing the image recording direction as a further reference variable, c) wherein the capturing mobile imaging system is in a predefined position and/or alignment suitable for image recording, d) detecting a changed and/or non-capturable position of the at least one optical marker and/or a changed and/or non-capturable image recording direction, and e) repositioning the mobile imaging system using a comparison of the reference variables from a) and b) with the respectively corresponding reference variables from d). An image capturing unit and an optical marker are also provided.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: September 19, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rainer Graumann, Sultan Haider, Gerhard Kleinszig, Jessica Magaraggia
  • Patent number: 9754404
    Abstract: A method generates a 3D image data set of a volume to be examined, in which at least part of a foreign object is positioned. A set of 2D projection images is recorded, the image regions which present the foreign object are detected in at least two 2D projection images of the set. The image regions which present the foreign object are segmented in the at least two 2D projection images. A marking assigned to the segmented image regions is incorporated in the at least two 2D projection images. The 2D projection images, including the at least two 2D projection images having the incorporated markings, are used for the reconstruction of a 3D image data set containing the marking.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: September 5, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Rainer Graumann, Gerhard Kleinszig, Wei Wei
  • Publication number: 20170112575
    Abstract: A framework for pedicle screw positioning is described herein. In accordance with one aspect, the framework segments at least one vertebra of interest in image data. The framework then automatically determines a pedicle region within the segmented vertebra of interest, and a safe region within the segmented vertebra of interest. An optimal insertion path passing through the pedicle region may then be generated within the safe region.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 27, 2017
    Inventors: Mingzhong Li, Shu Liao, Fitsum Aklilu Reda, Yiqiang Zhan, Xiang Sean Zhou, Gerhard Kleinszig
  • Patent number: 9592025
    Abstract: A visualization of an X-ray region during the production of an X-ray recording of an object is produced. In order to reduce radiation exposure for a physician and/or the patient during X-ray recordings, a proposal is made to record a video image of a region, which is captured by a beam from the X-ray source, of the object, to display the video image and to represent at least a portion of the beam in the displayed video image.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: March 14, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Gerhard Kleinszig, Wei Wei