Patents by Inventor Giannino DZIALLAS

Giannino DZIALLAS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11073436
    Abstract: A sensor device including a deflectable membrane made of a 2D nanomaterial, a first optical waveguide for guiding light, disposed adjacent to the membrane and extending along the surface of the membrane at least in a first section, as well as a measuring device for measuring, within the first section the influence of the membrane on an evanescent wave range of the light guided along the first optical waveguide. The influence of the membrane on the light guided in the optical waveguide, in particular on the evanescent wave range of the light, can be measured interferometrically by detecting phasing differences or phase shifts. This allows for a force-free readout of the membrane deflection. By using very thin 2D nanomaterials, the membrane can also react to very quick changes in force.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: July 27, 2021
    Assignees: FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V., IHP GmbH Leibniz-Institut für innovative Mikroelektronik
    Inventors: Giannino Dziallas, Lars Zimmermann, Tolga Tekin, Ha Duong Ngo
  • Publication number: 20200182716
    Abstract: A sensor device including a deflectable membrane made of a 2D nanomaterial, a first optical waveguide for guiding light, disposed adjacent to the membrane and extending along the surface of the membrane at least in a first section, as well as a measuring device for measuring, within the first section the influence of the membrane on an evanescent wave range of the light guided along the first optical waveguide. The influence of the membrane on the light guided in the optical waveguide, in particular on the evanescent wave range of the light, can be measured interferometrically by detecting phasing differences or phase shifts. This allows for a force-free readout of the membrane deflection. By using very thin 2D nanomaterials, the membrane can also react to very quick changes in force.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Applicants: FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V., IHP GmbH Leibniz-Institut für innovative Mikroelektronik
    Inventors: Giannino DZIALLAS, Lars ZIMMERMANN, Tolga TEKIN, Ha Duong NGO