Patents by Inventor Gino Georges Lavoie

Gino Georges Lavoie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7902396
    Abstract: Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: March 8, 2011
    Assignee: Eastman Chemical Company
    Inventors: Alan George Wonders, Gino Georges Lavoie, Charles Edwan Sumner, Jr.
  • Patent number: 7608732
    Abstract: Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: October 27, 2009
    Assignee: Eastman Chemical Company
    Inventors: Alan George Wonders, Gino Georges Lavoie, Charles Edwan Sumner, Jr., Bryan Wayne Davenport, Marcel de Vreede, Brent Alan Tennant
  • Publication number: 20090259069
    Abstract: Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
    Type: Application
    Filed: June 24, 2009
    Publication date: October 15, 2009
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Alan George Wonders, Gino Georges Lavoie, Charles Edwan Sumner, JR.
  • Patent number: 7582793
    Abstract: Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: September 1, 2009
    Assignee: Eastman Chemical Company
    Inventors: Alan George Wonders, Gino Georges Lavoie, Charles Edwan Sumner, Jr.
  • Patent number: 7550627
    Abstract: Processes for producing aromatic dicarboxylic acids are disclosed, the processes including a step of combining in a reaction medium a dialkyl aromatic, a solvent comprising water and a saturated organic acid having from 2-4 carbon atoms, and an oxygen-containing gas, at a temperature from about 125° C. to about 155° C., in the presence of a catalyst composition comprising cobalt, manganese, zirconium, and bromine, wherein the weight ratio of cobalt to manganese in the reaction mixture is from about 10 to about 400. The processes provide improved conversion, while reducing the formation of carbon oxides and other by-products.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: June 23, 2009
    Assignee: Eastman Chemical Company
    Inventors: Gino Georges Lavoie, Robert Thomas Hembre, Charles Edwan Sumner, Jr., Joseph Nathaniel Bays, Daniel Burts Compton, Brent Alan Tennant, Bryan Wayne Davenport, David Lange, Thomas Richard Floyd
  • Patent number: 7361784
    Abstract: Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: April 22, 2008
    Assignee: Eastman Chemical Company
    Inventors: Alan George Wonders, Gino Georges Lavoie, Charles Edwan Sumner, Jr.
  • Patent number: 7348452
    Abstract: A method for liquid phase oxidation of p-xylene with molecular oxygen to terephthalic acid that minimizes solvent loss through solvent burn and minimizes the formation of incomplete oxidation products such as 4-carboxybenzaldehyde (4-CBA). P-xylene is oxidized at a temperature in the range of 120° C. to 250° C. and in the presence of a source of molecular oxygen and a catalyst composition substantially free of zirconium atoms comprising a source of nickel (Ni) atoms, a source of manganese (Mn) atoms, and a source of bromine (Br) atoms, to form a crude reaction mixture comprising terephthalic acid and incompletely oxidized reaction products comprising 4-CBA, wherein the stoichiometric molar ratio of bromine atoms to manganese atoms is 1.5 or less, and the amount of nickel atoms is at least 500 ppm.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: March 25, 2008
    Assignee: Eastman Chemical Company
    Inventor: Gino Georges Lavoie
  • Patent number: 7319084
    Abstract: Catalyst compositions useful for the polymerization or oligomerization of olefins are disclosed. Certain of the catalyst compositions comprise N-pyrrolyl substituted nitrogen donors. Also disclosed are processes for the polymerization or oligomerization of olefins using the catalyst compositions.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: January 15, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Jr., Anthony Gerard Martin Barrett, Thomas William Smith, Jason Clay Pearson
  • Patent number: 6946532
    Abstract: Catalyst compositions useful for the polymerization of olefins are disclosed. These compositions comprise a Group 8-10 metal complex comprising a bidentate or variable denticity ligand comprising one or two nitrogen donor atom or atoms independently substituted by an aromatic or heteroaromatic ring(s), wherein the ortho positions of said ring(s) are substituted by aryl or heteroaryl groups. Also disclosed are processes for the polymerization of olefins using the catalyst compositions.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: September 20, 2005
    Assignee: Eastman Chemical Company
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Jr., Thomas William Smith, Jason Clay Pearson, Anthony Gerard Martin Barrett
  • Patent number: 6844446
    Abstract: Catalyst compositions useful for the polymerization of olefins are disclosed. These compositions comprise a Group 8-10 metal complex comprising a bidentate or variable denticity ligand comprising one or two nitrogen donor atom or atoms independently substituted by an aromatic or heteroaromatic ring(s), wherein the ortho positions of said ring(s) are substituted by aryl or heteroaryl groups. Also disclosed are processes for the polymerization of olefins using the catalyst compositions.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: January 18, 2005
    Assignee: Eastman Chemical Company
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Jr., Thomas William Smith, Jason Clay Pearson, Anthony Gerard Martin Barrett
  • Patent number: 6825356
    Abstract: Catalyst compositions useful for the polymerization or oligomerization of olefins are disclosed. Certain of the catalyst compositions comprise N-pyrrolyl substituted nitrogen donors. Also disclosed are processes for the polymerization or oligomerization of olefins using the catalyst compositions.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: November 30, 2004
    Assignee: Eastman Chemical Company
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Jr., Anthony Gerard Martin Barrett, Thomas William Smith, Jason Clay Pearson
  • Patent number: 6822062
    Abstract: Methods for preparing olefin polymers, and catalysts for preparing olefin polymers are disclosed. The polymers can be prepared by contacting the corresponding monomers with a Group 8-10 transition metal catalyst and a solid support. The polymers are suitable for processing in conventional extrusion processes, and can be formed into high barrier sheets or films, or low molecular weight resins for use in synthetic waxes in wax coatings or as emulsions.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: November 23, 2004
    Assignee: Eastman Chemical Company
    Inventors: Peter Borden Mackenzie, Leslie Shane Moody, Christopher Moore Killian, Gino Georges Lavoie
  • Publication number: 20040029720
    Abstract: Methods for preparing olefin polymers, and catalysts for preparing olefin polymers are disclosed. The polymers can be prepared by contacting the corresponding monomers with a Group 8-10 transition metal catalyst and a solid support. The polymers are suitable for processing in conventional extrusion processes, and can be formed into high barrier sheets or films, or low molecular weight resins for use in synthetic waxes in wax coatings or as emulsions.
    Type: Application
    Filed: June 26, 2003
    Publication date: February 12, 2004
    Applicant: Eastman Chemical Company
    Inventors: Peter Borden Mackenzie, Leslie Shane Moody, Christopher Moore Killian, Gino Georges Lavoie
  • Publication number: 20030228978
    Abstract: Catalyst compositions useful for the polymerization of olefins are disclosed. These compositions comprise a Group 8-10 metal complex comprising a bidentate or variable denticity ligand comprising one or two nitrogen donor atom or atoms independently substituted by an aromatic or heteroaromatic ring(s), wherein the ortho positions of said ring(s) are substituted by aryl or heteroaryl groups. Also disclosed are processes for the polymerization of olefins using the catalyst compositions.
    Type: Application
    Filed: April 15, 2003
    Publication date: December 11, 2003
    Applicant: Eastman Chemical Company
    Inventors: Leslie Shane Moody, Peter Borden MacKenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Thomas William Smith, Jason Clay Pearson, Anthony Gerard Martin Barrett
  • Patent number: 6660677
    Abstract: A catalyst for the polymerization of olefins is disclosed. The catalyst comprises a complex comprising (a) a ligand of the formula X, (b) a group 8-10 transition metal, and optionally (c) a Bronsted or Lewis acid, wherein R1 and R6 are each, independently, hydrocarbyl, substituted hydrocarbyl, or silyl; N represents nitrogen; and A and B1 are each, independently, a heteroatom connected mono-radical wherein the connected heteroatom is selected from Group 15 or 16 of the Periodic Table; in addition, A and B1 may be linked to each other by a bridging group. The complex is attached to a solid support. The solid support, the Bronsted or Lewis acid, and the complex may be combined in any order to form the catalyst. A process for making the catalyst is also described. Olefin polymerization and copolymerization processes are also described.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: December 9, 2003
    Assignee: Eastman Chemical Company
    Inventors: Peter Borden Mackenzie, Leslie Shane Moody, Christopher Moore Killian, Gino Georges Lavoie
  • Publication number: 20030225228
    Abstract: Catalyst compositions useful for the polymerization or oligomerization of olefins are disclosed. Certain of the catalyst compositions comprise N-pyrrolyl substituted nitrogen donors. Also disclosed are processes for the polymerization or oligomerization of olefins using the catalyst compositions.
    Type: Application
    Filed: February 11, 2003
    Publication date: December 4, 2003
    Applicant: Eastman Chemical Company
    Inventors: Leslie Shane Moody, Peter Borden MacKenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Thomas William Smith, Jason Clay Pearson, Anthony Gerard Martin Barrett, Geoffrey William Coates
  • Publication number: 20030195110
    Abstract: Catalyst compositions useful for the polymerization or oligomerization of olefins are disclosed. Certain of the catalyst compositions comprise N-pyrrolyl substituted nitrogen donors. Also disclosed are processes for the polymerization or oligomerization of olefins using the catalyst compositions.
    Type: Application
    Filed: January 3, 2003
    Publication date: October 16, 2003
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Anthony Gerard Martin Barrett, Thomas William Smith, Jason Clay Pearson
  • Patent number: 6620896
    Abstract: Mixed olefin polymerization catalysts, methods for preparing olefin polymers using the catalysts, and polymers obtained therefrom are disclosed. The mixed catalyst system comprises the combination of (a) a Group 8-10 transition metal complex of a bidentate or tridentate ligand comprising at least one nitrogen donor selected from Set 1, (b) either a Group 8-10 transition metal complex of a bidentate or tridentate ligand comprising at least one nitrogen donor selected from Set 1 or a bidentate ligand comprising a nitrogen-nitrogen donor selected from Set 2, or a Group 4 transition metal complex of a multidnentate ligand comprising at least 1 cyclopentadienyl or indenyl ring selected from Set 3 or a titanium or chromium Ziegler-Natta catalyst selected from Set 4, and optionally (c) a compound Y.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: September 16, 2003
    Assignee: Eastman Chemical Company
    Inventors: Christopher Moore Killian, Peter Borden Mackenzie, Gino Georges Lavoie, James Allen Ponasik, Jr., Leslie Shane Moody
  • Patent number: 6605677
    Abstract: Improved Group 8-10 transition metal based supported catalyst processes for the polymerization of olefins are described. Some of the improvements pertain to protocols for catalyst preparation and activation which improve the catalyst productivity in the presence of hydrogen as a molecular weight control agent.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: August 12, 2003
    Assignee: Eastman Chemical Company
    Inventors: Gino Georges Lavoie, Peter Borden Mackenzie, Christopher Moore Killian, Thomas William Smith
  • Patent number: 6579823
    Abstract: Catalyst compositions useful for the polymerization of olefins are disclosed. These compositions comprise a Group 8-10 metal complex comprising a bidentate or variable denticity ligand comprising one or two nitrogen donor atom or atoms independently substituted by an aromatic or heteroaromatic ring(s), wherein the ortho positions of said ring(s) are substituted by aryl or heteroaryl groups. Also disclosed are processes for the polymerization of olefins using the catalyst compositions.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: June 17, 2003
    Assignee: Eastman Chemical Company
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Jr., Thomas William Smith, Jason Clay Pearson, Anthony Gerard Martin Barrett