Patents by Inventor Giulia Pietra

Giulia Pietra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8300306
    Abstract: A Raman amplifier includes at least a first and a second optical Raman-active fiber disposed in series with each other. A first pump source is connected to the first Raman-active fiber, and is adapted for emitting and coupling into the first Raman-active fiber a first pump radiation including a first group of frequencies. A second pump source is connected to the second Raman-active fiber, and is adapted for emitting and coupling into the second Raman-active fiber a second pump radiation including a second group of frequencies. The whole of said first and second group of frequencies extends over a pump frequency range having a width of at least the 40% of the Raman shift. The minimum and the maximum frequency in each of said first and second group of frequencies differ with each other of at most the 70% of said Raman shift.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: October 30, 2012
    Assignee: Google Inc.
    Inventors: Attilio Bragheri, Giulia Pietra, Raffaele Corsini, Danilo Caccioli
  • Publication number: 20110080634
    Abstract: A Raman amplifier includes at least a first and a second optical Raman-active fiber disposed in series with each other. A first pump source is connected to the first Raman-active fiber, and is adapted for emitting and coupling into the first Raman-active fiber a first pump radiation including a first group of frequencies. A second pump source is connected to the second Raman-active fiber, and is adapted for emitting and coupling into the second Raman-active fiber a second pump radiation including a second group of frequencies. The whole of said first and second group of frequencies extends over a pump frequency range having a width of at least the 40% of the Raman shift. The minimum and the maximum frequency in each of said first and second group of frequencies differ with each other of at most the 70% of said Raman shift.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 7, 2011
    Inventors: Attilio Bragheri, Giulia Pietra, Raffaele Corsini, Danilo Caccioli
  • Patent number: 7813034
    Abstract: A Raman amplifier comprises at least a first and a second optical Raman-active fiber disposed in series with each other. A first pump source is connected to the first Raman-active fiber, and is adapted for emitting and coupling into the first Raman-active fiber a first pump radiation including a first group of frequencies. A second pump source is connected to the second Raman-active fiber, and is adapted for emitting and coupling into the second Raman-active fiber a second pump radiation including a second group of frequencies. The whole of said first and second group of frequencies extends over a pump frequency range having a width of at least the 40% of the Raman shift. The minimum and the maximum frequency in each of said first and second group of frequencies differ with each other of at most the 70% of said Raman shift.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: October 12, 2010
    Assignee: PGT Photonics S.p.A.
    Inventors: Attilio Bragheri, Giulia Pietra, Raffaele Corsini, Danilo Caccioli
  • Publication number: 20070223085
    Abstract: A Raman amplifier comprises at least a first and a second optical Raman-active fiber disposed in series with each other. A first pump source is connected to the first Raman-active fiber, and is adapted for emitting and coupling into the first Raman-active fiber a first pump radiation including a first group of frequencies. A second pump source is connected to the second Raman-active fiber, and is adapted for emitting and coupling into the second Raman-active fiber a second pump radiation including a second group of frequencies. The whole of said first and second group of frequencies extends over a pump frequency range having a width of at least the 40% of the Raman shift. The minimum and the maximum frequency in each of said first and second group of frequencies differ with each other of at most the 70% of said Raman shift.
    Type: Application
    Filed: May 18, 2007
    Publication date: September 27, 2007
    Inventors: Attilio Bragheri, Giulia Pietra, Raffaele Corsini, Danilo Caccioli
  • Patent number: 7253944
    Abstract: A Raman amplifier having at least a first and a second optical Raman-active fiber disposed in series with each other is disclosed. A first pump source is connected to the first Raman-active fiber, and is adapted for emitting and coupling into the first Raman-active fiber a first pump radiation including a first group of frequencies. A second pump source is connected to the second Raman-active fiber, and is adapted for emitting and coupling into the second Raman-active fiber a second pump radiation including a second group of frequencies. The whole of the first and second group of frequencies extends over a pump frequency range having a width of at least 40% of the Raman shift. The minimum and the maximum frequency in each of the first and second group of frequencies differ from each other by at most 70% of the Raman shift.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: August 7, 2007
    Assignee: Pirelli & C. S.p.A.
    Inventors: Attilio Bragheri, Giulia Pietra, Raffaele Corsini, Danilo Caccioli
  • Publication number: 20070071061
    Abstract: A tunable resonant grating filter that can reflect optical radiation at a resonant wavelength, the resonant wavelength being selectively variable. The filter includes a diffraction grating, a planar waveguide, and a light transmissive material having a selectively variable refractive index to permit tuning of the filter, the light transmissive material forming a tunable cladding layer for the waveguide, preferably a liquid crystal material. The diffraction grating is placed on the opposite side of the tunable layer with respect to the planar waveguide, thereby making it possible to tailor the grating structural parameters to the desired bandwidth of the filter response without significantly affecting the tunability of the filter. Within the resonant structure, the core layer, i.e., the waveguide, can be placed close to the tunable layer either in direct contact with the tunable layer or with an interposed relatively thin intermediate layer(s) between the core and the tunable layer.
    Type: Application
    Filed: December 24, 2003
    Publication date: March 29, 2007
    Inventors: Giulia Pietra, Giacomo Gorni
  • Publication number: 20060109543
    Abstract: A Raman amplifier having at least a first and a second optical Raman-active fiber disposed in series with each other is disclosed. A first pump source is connected to the first Raman-active fiber, and is adapted for emitting and coupling into the first Raman-active fiber a first pump radiation including a first group of frequencies. A second pump source is connected to the second Raman-active fiber, and is adapted for emitting and coupling into the second Raman-active fiber a second pump radiation including a second group of frequencies. The whole of the first and second group of frequencies extends over a pump frequency range having a width of at least 40% of the Raman shift. The minimum and the maximum frequency in each of the first and second group of frequencies differ from each other by at most 70% of the Raman shift.
    Type: Application
    Filed: July 31, 2002
    Publication date: May 25, 2006
    Inventors: Attilio Bragheri, Giulia Pietra, Raffaele Corsini, Danilo Caccioli