Patents by Inventor Giuseppe D'Aguanno

Giuseppe D'Aguanno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090310926
    Abstract: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.
    Type: Application
    Filed: August 24, 2009
    Publication date: December 17, 2009
    Applicant: Government of the United States as represented by the Secretary of the Army
    Inventors: Giuseppe D'Aguanno, Mark J. Bloemer, Nadia Mattiucci, Michael Scalora
  • Patent number: 7580604
    Abstract: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: August 25, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Giuseppe D'Aguanno, Mark J. Bloemer, Nadia Mattiucci, Michael Scalora
  • Publication number: 20070237478
    Abstract: We have shown that a single layer of a 3D Zero Index Material (ZIM) has omnidirectional reflection properties. In the range between the electric plasma frequency and the magnetic plasma frequency, ZIM reflect radiation for all angles of incidence and polarization with reflectivities of ˜99%. In addition, with increasing angles of incidence, the reflecting band does not shift in frequency but actually widens. The operational bandwidth can be 100% or greater by increasing the separation between the electric and magnetic plasma frequencies. We have also shown that in the spectral region that allows the omnidirectional gap, ZIM can be used as the cladding of hollow waveguides with better performance than traditional hollow waveguides.
    Type: Application
    Filed: April 3, 2006
    Publication date: October 11, 2007
    Applicant: Government of the United States as represented by the Secretary of the Army
    Inventors: Giuseppe D'Aguanno, Mark Bloemer, Nadia Mattiucci, Michael Scalora
  • Patent number: 6744552
    Abstract: A photonic band gap (PBG) device is provided for frequency up and/or down-converting first and second photonic signals incident on the device to produce a down-converted output photonic signal. When the first and second incident photonic signals have respective first and second frequencies &ohgr;3 and &ohgr;2, the down-converted photonic signal has a third frequency &ohgr;1=&ohgr;3−&ohgr;2. When the first incident field has a frequency &ohgr;1, the first up-converted photonic signal has a second frequency &ohgr;2. The second up-converted photonic signal has a third frequency &ohgr;3=&ohgr;1+&ohgr;2. Thus, the PBG device can be used to generate coherent near- and mid-IR signals by frequency down-converting photonic signals from readily available photonic signal sources, or red, blue, and ultraviolet signals by up-converting the same readily available photonic signal sources.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: June 1, 2004
    Inventors: Michael Scalora, Mark J. Bloemer, Marco Centini, Giuseppe D'Aguanno
  • Patent number: 6538794
    Abstract: A device is provided for generating a photonic signal having a phase different from an input photonic signal that is incident on the device. The input photonic signal has an signal frequency, signal bandwidth, and a signal intensity. The device comprises a plurality of material layers. The material layers are arranged such that the device exhibits a photonic band gap structure. The photonic band gap structure exhibits a transmission band edge that corresponds to the input photonic signal frequency. A second photonic signal is generated at a second photonic frequency preferably close to a second band edge. The interaction of the input photonic signal with the second photonic signal generates a phase shift of order &pgr; for relatively small input intensities.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: March 25, 2003
    Inventors: Giuseppe D'Aguanno, Marco Centini, Concita Sibilia, Michael Scalora, Mark Bloemer
  • Patent number: 6414780
    Abstract: Non-linear reflectivity and non-linear transmissivity of a first photonic signal incident on a photonic band gap (PBG) structure are controlled by applying a second photonic signal to the PBG structure while the first photonic signal is incident on the PBG structure. The first and second photonic signals have respective frequencies near a low frequency, first order band gap edge and a high frequency, second order band gap edge resonance peak of the PBG structure. The first photonic signal undergoes enhanced non-linear gain near the band gap edges when a predetermined phase difference is imposed between the first and second photonic signals, resulting in dramatic reflectivity and transmissivity changes for a band gap structure of only a few microns in length.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: July 2, 2002
    Inventors: Giuseppe D'Aguanno, Marco Centini, Concita Sibilia, Michael Scalora, Mark Bloemer
  • Publication number: 20010028029
    Abstract: A photonic band gap (PBG) device is provided for frequency up and/or down-converting first and second photonic signals incident on the device to produce a down-converted output photonic signal. When the first and second incident photonic signals have respective first and second frequencies &ohgr;3 and &ohgr;2, the down-converted photonic signal has a third frequency &ohgr;1=&ohgr;3−&ohgr;2. When the first incident field has a frequency &ohgr;1, the first up-converted photonic signal has a second frequency &ohgr;2. The second up-converted photonic signal has a third frequency &ohgr;3=&ohgr;1−&ohgr;2. Thus, the PBG device can be used to generate coherent near- and mid-IR signals by frequency down-converting photonic signals from readily available photonic signal sources, or red, blue, and ultraviolet signals by up-converting the same readily available photonic signal sources.
    Type: Application
    Filed: December 22, 2000
    Publication date: October 11, 2001
    Inventors: Michael Scalora, Mark J. Bloemer, Marco Centini, Giuseppe D'Aguanno