Patents by Inventor Glen Peter Koste

Glen Peter Koste has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11368225
    Abstract: A satellite relay communication system includes a central terminal. The central terminal includes a passive optical router and a multiplexer. The satellite relay communication system also includes remote terminals, each remote terminal including an optical transceiver configured to send optical signals to the passive optical router, configured to receive optical signals from the passive optical router, and configured to multiplex optical signals received from the passive optical router.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: June 21, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Glen Peter Koste
  • Publication number: 20210152248
    Abstract: A satellite relay communication system includes a central terminal. The central terminal includes a passive optical router and a multiplexer. The satellite relay communication system also includes remote terminals, each remote terminal including an optical transceiver configured to send optical signals to the passive optical router, configured to receive optical signals from the passive optical router, and configured to multiplex optical signals received from the passive optical router.
    Type: Application
    Filed: March 17, 2020
    Publication date: May 20, 2021
    Inventor: Glen Peter Koste
  • Publication number: 20210104812
    Abstract: A wireless access point is disclosed. The wireless access point includes a substrate, an antenna structure disposed on the substrate and configured to transmit and receive wireless electromagnetic communication signals, and a fiber-optic interface disposed on the substrate and communicatively coupled to the antenna structure and a fiber-optic cable. The fiber-optic interface is configured to transmit and receive optical communication signals through the fiber-optic cable.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 8, 2021
    Inventors: Christopher James Kapusta, Joseph Alfred Iannotti, Stanton Earl Weaver, Glen Peter Koste
  • Patent number: 10718990
    Abstract: A photonic circuit integrated on a silicon-on-insulator waveguide, the silicon-on-insulator waveguide including a guiding layer, a cladding layer, and a substrate layer. The guiding layer having a first surface and a second surface, the second surface abutting one surface of the cladding layer, the cladding layer having another surface in abutment with a surface of the substrate layer, a photon pump in optical communication with the guiding layer, a nonlinear optical material in contact with the guiding layer first surface, a photon beam of the photon pump traversing the silicon-on-insulator waveguide, and the silicon-on-insulator waveguide having an output beam that includes a signal beam and an idler beam.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 21, 2020
    Assignee: General Electric Company
    Inventors: Glen Peter Koste, Adam Halverson
  • Patent number: 10697806
    Abstract: A system may include a substrate, a computing device that performs one or more edge processing operations disposed on the substrate, and an integrated photonic circuit that performs distributed acoustic sensing operations and is also disposed on the substrate. The integrated photonic circuit may include a light source, a circulator, and a photodiode. The light may transmit a first light pulse. The circulator may transmit the first light pulse to a fiber-optic cable. The circulator may also receive a back-scattered light pulse based at least in part on the first light pulse. The photodiode may receive at least a portion of the back-scattered light pulse. The photodiode may generate one or more electrical signals based at least in part on the portion of the back-scattered light pulse.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 30, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Glen Peter Koste
  • Publication number: 20200201137
    Abstract: A photonic circuit integrated on a silicon-on-insulator waveguide, the silicon-on-insulator waveguide including a guiding layer, a cladding layer, and a substrate layer. The guiding layer having a first surface and a second surface, the second surface abutting one surface of the cladding layer, the cladding layer having another surface in abutment with a surface of the substrate layer, a photon pump in optical communication with the guiding layer, a nonlinear optical material in contact with the guiding layer first surface, a photon beam of the photon pump traversing the silicon-on-insulator waveguide, and the silicon-on-insulator waveguide having an output beam that includes a signal beam and an idler beam.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 25, 2020
    Inventors: Glen Peter KOSTE, Adam HALVERSON
  • Publication number: 20200158543
    Abstract: A system may include a substrate, a computing device that performs one or more edge processing operations disposed on the substrate, and an integrated photonic circuit that performs distributed acoustic sensing operations and is also disposed on the substrate. The integrated photonic circuit may include a light source, a circulator, and a photodiode. The light may transmit a first light pulse. The circulator may transmit the first light pulse to a fiber-optic cable. The circulator may also receive a back-scattered light pulse based at least in part on the first light pulse. The photodiode may receive at least a portion of the back-scattered light pulse. The photodiode may generate one or more electrical signals based at least in part on the portion of the back-scattered light pulse.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventor: Glen Peter Koste
  • Patent number: 10527784
    Abstract: Aspects of the present disclosure are directed toward designs and methods improving optical sensing, wavelength division multiplexed (WDM) telecommunication transceivers, WDM add/drops, and spectrometer techniques that may benefit from a stable wavelength reference. The disclosed designs and methods are useful in the manufacture of a stable wavelength reference that may compensate for temperature variations.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: January 7, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Glen Peter Koste, Hendrik Pieter Jacobus de Bock, Cheng-Po Chen
  • Patent number: 10473270
    Abstract: Leak detection user interfaces are provided. In general, a user interface for a pipeline management system can be configured to provide information regarding one or more pipelines to a user. The information can include data gathered using one or more sensors sensing various parameters. The information on the user interface can include results of analysis of the gathered data, such as notifications that the gathered data indicates an anomaly with a pipeline. The notifications of anomalies can be provided on the user interface in real time with the data analysis. Accordingly, the user can trigger one or more corrective actions such as notifying maintenance personnel local to a location of the identified anomaly, remotely controlling the pipeline with the anomaly to close valve(s) and/or other equipment to prevent fluid flow in the pipeline in the area of the detected anomaly, etc.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 12, 2019
    Assignee: General Electric Company
    Inventors: Bruce J. Jacobson, Ryan McCormack, Gandeephan Ganeshalingam, Trent Gillham, Mauricio Palomino, Glen Peter Koste, Ehsan Jalilian
  • Patent number: 10275402
    Abstract: According to some embodiments, a signal processing unit may receive distributed acoustic sensing data associated with a first set of a plurality of pipeline locations. The signal processing unit may also receive collected physical data representing a physical characteristic of a second set of a plurality of pipeline locations. The signal processing unit may then utilize a pipeline model having the distributed acoustic sensing data and collected physical data as inputs to automatically generate at least one alert indicating an increased probability of damage to the pipeline.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: April 30, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Marco Guerriero, Frederick Wilson Wheeler, Glen Peter Koste, Sachin Narahari Dekate, Peter Henry Tu
  • Patent number: 9880142
    Abstract: A photonic sensor system includes: a photodetector; a signal processor coupled to the photodetector; and a sensor structure configured to provide fluid-response selectivity, spatially distribute light, and to receive light from a light source and convey light to the photodetector. The sensor structure includes a plurality of fluid sensitive interferometric nanostructure layers manufactured on a substrate; wherein the plurality of fluid sensitive interferometric nanostructure layers includes alternating high and low porosity layers.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Wajdi Mohammad Ahmad, Nasr Alkadi, John Andrew Westerheide, Glen Peter Koste, Sachin Narahari Dekate
  • Patent number: 9683435
    Abstract: A sensor deployment system for positioning within a well casing is provided. The sensor deployment system includes a deployment shuttle comprising a first end, a second end, and an inner surface and an outer surface extending between the first end and the second end. The inner surface is configured to define a channel between the first end and the second end. A sleeve is coupled to the outer surface and configured to move relative to the well casing. A wire support is coupled to the inner surface and extending into the channel.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: June 20, 2017
    Assignee: General Electric Company
    Inventors: Andrew Jacob Gorton, Glen Peter Koste, Mahadevan Balasubramaniam, Stephen Sanborn
  • Publication number: 20170076563
    Abstract: According to some embodiments, a signal processing unit may receive distributed acoustic sensing data associated with a first set of a plurality of pipeline locations. The signal processing unit may also receive collected physical data representing a physical characteristic of a second set of a plurality of pipeline locations. The signal processing unit may then utilize a pipeline model having the distributed acoustic sensing data and collected physical data as inputs to automatically generate at least one alert indicating an increased probability of damage to the pipeline.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Marco Guerriero, Frederick Wilson Wheeler, Glen Peter Koste, Sachin Narahari Dekate, Peter Henry Tu
  • Publication number: 20160334327
    Abstract: A fluid sensor that includes fluid sensitive interferometric nanostructure layers configured into an open-air resonant structure. Another fluid sensor also includes a polarization sensitive photodetector configured to detect optical contributions of different components of a fluid to the structure. A photonic sensor system includes: a photodetector; a signal processor coupled to the photodetector; and a sensor structure configured to provide fluid-response selectivity, spatially distribute light, and to receive light from a light source and convey light to the photodetector. A method of selective measurement of components in fluid in a process area includes: exposing a sensing structure to the fluid; interrogating the sensing structure with light from outside the process area; measuring a change in optical properties of the sensing structure; correlating the measured change to a stored value; and providing quantitative values of levels of the components in the fluid.
    Type: Application
    Filed: May 16, 2016
    Publication date: November 17, 2016
    Inventors: Radislav Alexandrovich Potyrailo, Wajdi Mohammad Ahmad, Nasr Alkadi, John Andrew Westerheide, Glen Peter Koste, Sachin Narahari Dekate
  • Patent number: 9488786
    Abstract: Optical-based apparatus and method for sensing parameters in connection with an asset, such as a pipeline, are provided. At least two sites in an optical fiber may include a respective fiber grating arranged to have a respective optical response in a wavelength spectrum having a distinguishing feature indicative of a value of a respective local parameter at a respective grating site. The two fiber gratings may be further arranged to form, in combination with a respective portion of the optical fiber which extends between the two sites, respective optical backscatter portions that when combined with one another are effective to sense an optical change in the fiber portion between the sites indicative of a value of a distributed parameter. This is a parameter modality different from a parameter modality of the respective local parameters at the respective grating sites.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 8, 2016
    Assignee: General Electric Company
    Inventors: Glen Peter Koste, Raymond Verle Jensen, Hua Xia, Boon Kwee Lee, Victor Petrovich Ostroverkhov, Sachin Narahari Dekate, William Albert Challener
  • Patent number: 9341532
    Abstract: A pressure sensing cable in one embodiment includes a polarization maintaining (PM) optic fiber having a length; and a Fiber Bragg Grating (FBG) pair formed in the PM optic fiber. The FBG pair includes a first FBG formed at a location along the length of the optic fiber. The first FBG defines a first wavelength range at which the first FBG is reflective. The FBG pair also includes a second FBG spaced a distance from the first FBG to define a FBG cavity extending between the first FBG and the second FBG. The second FBG defines a second wavelength range at which the second FBG is reflective. The first wavelength range of the first FBG and the second wavelength range of the second FBG at least partially overlap.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: May 17, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: William Albert Challener, Glen Peter Koste, Sachin Narahari Dekate, Sabarni Palit
  • Patent number: 9279666
    Abstract: A system is provided for monitoring strain in a substrate using a strain sensor element within a fiber optic sensing cable. Accurate and rapid measurement of strain of remote substrates presents major technical challenges and is the focus of much of the description presented. However, systems, methods and devices provided by the present invention are not only capable of reliably measuring strain in real time, but are also capable of measuring other characteristics of a substrate such as its temperature, pressure and its acoustic characteristics. The system is configured such that a strain sensor element within a strain sensing zone detects substantially the true strain characteristics of the substrate. And while other sensing elements within the same fiber optic sensing cable may not be configured to detect substrate strain at all, these sensing elements may reliably measure the temperature and pressure at the surface of the substrate adjacent to the strain sensing zone.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: March 8, 2016
    Assignee: General Electric Company
    Inventors: Mahadevan Balasubramaniam, Slawomir Rubinsztajn, Glen Peter Koste, Kaustubh Ravindra Nagarkar, Vincent Frank Rubino, Jeffrey Roy Rudd, Paul Jeffrey Gillespie
  • Publication number: 20150308909
    Abstract: A method of monitoring a pipe using a measurement device connected to an optical fiber cable that is wrapped around the pipe along a length of the pipe includes generating a first light pulse such that the first light pulse propagates through the optical fiber cable towards the pipe; receiving, at the measurement device, a plurality of second light pulses reflected from a plurality of different reflection points within the optical fiber cable, respectively, the plurality of different reflection points being located at a plurality of different locations along the length of the pipe, the plurality of light pulses each being reflected forms of the first light pulse; and determining one or more optical path length (OPL) change measurements based on the plurality of second light pulses, the one or more OPL change measurements corresponding, respectively, to the one or more different location along the length of the pipe.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Applicant: GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
    Inventors: James Patrick CARNEAL, Glen Peter KOSTE
  • Patent number: 9151924
    Abstract: An optical-based sensing apparatus and method are provided. A sensing apparatus (10) may include a tube (30). An optical fiber (12) may be encased in the tube. A buffering layer (14) may be interposed between the optical fiber and the tube. The buffering layer and/or the tube may be selectively configured to form along a length of the apparatus a plurality of optical sensing zones (16, 18, 20) spatially arranged to sense parameters involving different parameter modalities.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: October 6, 2015
    Assignee: General Electric Company
    Inventors: Mahadevan Balasubramaniam, Glen Peter Koste, Slawomir Rubinsztajn, Sachin Narahari Dekate, Anurag Kasyap Vejjupalle Subramanyam, Sunilkumar Onkarnath Soni
  • Publication number: 20150268117
    Abstract: A pressure sensing cable in one embodiment includes a polarization maintaining (PM) optic fiber having a length; and a Fiber Bragg Grating (FBG) pair formed in the PM optic fiber. The FBG pair includes a first FBG formed at a location along the length of the optic fiber. The first FBG defines a first wavelength range at which the first FBG is reflective. The FBG pair also includes a second FBG spaced a distance from the first FBG to define a FBG cavity extending between the first FBG and the second FBG. The second FBG defines a second wavelength range at which the second FBG is reflective. The first wavelength range of the first FBG and the second wavelength range of the second FBG at least partially overlap.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Albert Challener, Glen Peter Koste, Sachin Narahari Dekate, Sabarni Palit