Patents by Inventor Gopinath Bhimarasetti

Gopinath Bhimarasetti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210036026
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Patent number: 10879241
    Abstract: Techniques are disclosed for controlling transistor sub-fin leakage. The techniques can be used for highly scaled finFETs, as well as other non-planar transistors. In some cases, the techniques include exposing a middle portion of a fin structure formed on a substrate and then converting the exposed portion to an electrically isolating material via a doping or oxidation process. For example, a monolayer doping (MLD) process may be used to deliver dopants to the exposed portion of the fin in a self-saturated monolayer scheme. In another example case, thermal oxidation may be used to convert the exposed portion to an insulator material. In some cases, a barrier layer (e.g., including carbon doping) may be located above the exposed portion of the fin to help prevent the doping or oxidation process from affecting the upper region of the fin, which is used for the transistor channel.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: December 29, 2020
    Assignee: INTEL Corporation
    Inventors: Glenn A. Glass, Prashant Majhi, Anand S. Murthy, Tahir Ghani, Daniel B. Aubertine, Heidi M. Meyer, Karthik Jambunathan, Gopinath Bhimarasetti
  • Publication number: 20200373299
    Abstract: An embodiment includes an apparatus comprising: first and second semiconductor fins that are parallel to each other; a first gate, on the first fin, including a first gate portion between the first and second fins; a second gate, on the second fin, including a second gate portion between the first and second fins; a first oxide layer extending along a first face of the first gate portion, a second oxide layer extending along a second face of the second gate portion, and a third oxide layer connecting the first and second oxide layers to each other; and an insulation material between the first and second gate portions; wherein the first, second, and third oxide layers each include an oxide material and the insulation material does not include the oxide material. Other embodiments are described herein.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventors: Leonard P. Guler, Gopinath Bhimarasetti, Vyom Sharma, Walid M. Hafez, Christopher P. Auth
  • Publication number: 20200373201
    Abstract: Embodiments disclosed herein include edge placement error mitigation processes and structures fabricated with such processes. In an embodiment, a method of fabricating an interconnect layer over a semiconductor die comprises forming a patterned layer over a substrate, disposing a resist layer over the patterned layer and patterning the resist layer to expose portions of the patterned layer. In an embodiment, overlay misalignment during the patterning results in the formation of edge placement error openings. In an embodiment, the method further comprises correcting the edge placement error openings, and patterning an opening into the substrate after correcting edge placement error openings.
    Type: Application
    Filed: May 23, 2019
    Publication date: November 26, 2020
    Inventors: Charles H. WALLACE, Mohit K. HARAN, Gopinath BHIMARASETTI
  • Patent number: 10847544
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Patent number: 10797047
    Abstract: An embodiment includes an apparatus comprising: first and second semiconductor fins that are parallel to each other; a first gate, on the first fin, including a first gate portion between the first and second fins; a second gate, on the second fin, including a second gate portion between the first and second fins; a first oxide layer extending along a first face of the first gate portion, a second oxide layer extending along a second face of the second gate portion, and a third oxide layer connecting the first and second oxide layers to each other; and an insulation material between the first and second gate portions; wherein the first, second, and third oxide layers each include an oxide material and the insulation material does not include the oxide material. Other embodiments are described herein.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: October 6, 2020
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Gopinath Bhimarasetti, Vyom Sharma, Walid M. Hafez, Christopher P. Auth
  • Publication number: 20200273887
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Patent number: 10692888
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: June 23, 2020
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Patent number: 10529660
    Abstract: Pore-filled dielectric materials for semiconductor structure fabrication, and methods of fabricating pore-filled dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a pore-filled dielectric material for semiconductor structure fabrication includes forming a trench in a material layer. The method also includes filling the trench with a porous dielectric material using a spin-on deposition process. The method also includes filling pores of the porous dielectric material with a metal-containing material using an atomic layer deposition (ALD) process.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Jessica M. Torres, Jeffery D. Bielefeld, Mauro J. Kobrinsky, Christopher J. Jezewski, Gopinath Bhimarasetti
  • Publication number: 20190296114
    Abstract: Non-planar semiconductor devices having omega-fins with doped sub-fin regions and methods of fabricating non-planar semiconductor devices having omega-fins with doped sub-fin regions are described. For example, a semiconductor device includes a plurality of semiconductor fins disposed above a semiconductor substrate, each semiconductor fin having a sub-fin portion below a protruding portion, the sub-fin portion narrower than the protruding portion. A solid state dopant source layer is disposed above the semiconductor substrate, conformal with the sub-fin region but not the protruding portion of each of the plurality of semiconductor fins. An isolation layer is disposed above the solid state dopant source layer and between the sub-fin regions of the plurality of semiconductor fins. A gate stack is disposed above the isolation layer and conformal with the protruding portions of each of the plurality of semiconductor fins.
    Type: Application
    Filed: June 7, 2019
    Publication date: September 26, 2019
    Inventors: Gopinath BHIMARASETTI, Walid M. HAFEZ, Joodong PARK, Weimin HAN, Raymond E. COTNER, Chia-Hong JAN
  • Patent number: 10424580
    Abstract: Semiconductor devices having modulated nanowire counts and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a plurality of nanowires disposed above a substrate and stacked in a first vertical plane with a first uppermost nanowire. A second semiconductor device has one or more nanowires disposed above the substrate and stacked in a second vertical plane with a second uppermost nanowire. The second semiconductor device includes one or more fewer nanowires than the first semiconductor device. The first and second uppermost nanowires are disposed in a same plane orthogonal to the first and second vertical planes.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: September 24, 2019
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Gopinath Bhimarasetti, Tahir Ghani, Seiyon Kim
  • Publication number: 20190267282
    Abstract: Bottom-up fill dielectric materials for semiconductor structure fabrication, and methods of fabricating bottom-up fill dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a dielectric material for semiconductor structure fabrication includes forming a trench in a material layer above a substrate. A blocking layer is formed partially into the trench along upper portions of sidewalls of the trench. A dielectric layer is formed filling a bottom portion of the trench with a dielectric material up to the blocking layer. The blocking layer is removed. The forming the blocking layer, the forming the dielectric layer, and the removing the blocking layer are repeated until the trench is completely filled with the dielectric material.
    Type: Application
    Filed: December 23, 2016
    Publication date: August 29, 2019
    Inventors: Florian GSTREIN, Rami HOURANI, Gopinath BHIMARASETTI, James M. BLACKWELL
  • Publication number: 20190252313
    Abstract: Pore-filled dielectric materials for semiconductor structure fabrication, and methods of fabricating pore-filled dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a pore-filled dielectric material for semiconductor structure fabrication includes forming a trench in a material layer. The method also includes filling the trench with a porous dielectric material using a spin-on deposition process. The method also includes filling pores of the porous dielectric material with a metal-containing material using an atomic layer deposition (ALD) process.
    Type: Application
    Filed: September 30, 2016
    Publication date: August 15, 2019
    Inventors: Jessica M. TORRES, Jeffery D. BIELEFELD, Mauro J. KOBRINSKY, Christopher J. JEZEWSKI, Gopinath BHIMARASETTI
  • Patent number: 10355093
    Abstract: Non-planar semiconductor devices having omega-fins with doped sub-fin regions and methods of fabricating non-planar semiconductor devices having omega-fins with doped sub-fin regions are described. For example, a semiconductor device includes a plurality of semiconductor fins disposed above a semiconductor substrate, each semiconductor fin having a sub-fin portion below a protruding portion, the sub-fin portion narrower than the protruding portion. A solid state dopant source layer is disposed above the semiconductor substrate, conformal with the sub-fin region but not the protruding portion of each of the plurality of semiconductor fins. An isolation layer is disposed above the solid state dopant source layer and between the sub-fin regions of the plurality of semiconductor fins. A gate stack is disposed above the isolation layer and conformal with the protruding portions of each of the plurality of semiconductor fins.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 16, 2019
    Assignee: Intel Corporation
    Inventors: Gopinath Bhimarasetti, Walid M. Hafez, Joodong Park, Weimin Han, Raymond E. Cotner, Chia-Hong Jan
  • Publication number: 20180331098
    Abstract: An embodiment includes an apparatus comprising: first and second semiconductor fins that are parallel to each other; a first gate, on the first fin, including a first gate portion between the first and second fins; a second gate, on the second fin, including a second gate portion between the first and second fins; a first oxide layer extending along a first face of the first gate portion, a second oxide layer extending along a second face of the second gate portion, and a third oxide layer connecting the first and second oxide layers to each other; and an insulation material between the first and second gate portions; wherein the first, second, and third oxide layers each include an oxide material and the insulation material does not include the oxide material. Other embodiments are described herein.
    Type: Application
    Filed: December 26, 2015
    Publication date: November 15, 2018
    Inventors: Leonard P. Guler, Gopinath Bhimarasetti, Vyom Sharma, Walid M. Hafez, Christopher P. Auth
  • Publication number: 20180247939
    Abstract: Techniques are disclosed for controlling transistor sub-fin leakage. The techniques can be used for highly scaled finFETs, as well as other non-planar transistors. In some cases, the techniques include exposing a middle portion of a fin structure formed on a substrate and then converting the exposed portion to an electrically isolating material via a doping or oxidation process. For example, a monolayer doping (MLD) process may be used to deliver dopants to the exposed portion of the fin in a self-saturated monolayer scheme. In another example case, thermal oxidation may be used to convert the exposed portion to an insulator material. In some cases, a barrier layer (e.g., including carbon doping) may be located above the exposed portion of the fin to help prevent the doping or oxidation process from affecting the upper region of the fin, which is used for the transistor channel.
    Type: Application
    Filed: September 25, 2015
    Publication date: August 30, 2018
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, PRASHANT MAJHI, ANAND S. MURTHY, TAHIR GHANI, DANIEL B. AUBERTINE, HEIDI M. MEYER, KARTHIK JAMBUNATHAN, GOPINATH BHIMARASETTI
  • Publication number: 20180226432
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Publication number: 20180151702
    Abstract: A method including forming a non-planar conducting channel of a multi-gate device on a substrate, the channel including a height dimension defined from a base at a surface of the substrate; modifying less than an entire portion of the channel; and forming a gate stack on the channel, the gate stack including a dielectric material and a gate electrode. An apparatus including a non-planar multi-gate device on a substrate including a channel including a height dimension defining a conducting portion and an oxidized portion and a gate stack disposed on the channel, the gate stack including a dielectric material and a gate electrode.
    Type: Application
    Filed: June 27, 2015
    Publication date: May 31, 2018
    Inventors: Seiyon KIM, Gopinath BHIMARASETTI, Rafael RIOS, Jack T. KAVALIEROS, Tahir GHANI, Anand S. MURTHY, Rishabh MEHANDRU
  • Patent number: 9972642
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: May 15, 2018
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Publication number: 20180040637
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI