Patents by Inventor Goran N. Marnfeldt

Goran N. Marnfeldt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210008365
    Abstract: The problem of a potentially high amount of supra-threshold charge passing through the patient's tissue at the end of an Implantable Pulse Generator (IPG) program is addressed by circuitry that periodically dissipates only small amount of the charge stored on capacitances (e.g., DC-blocking capacitors) during a pulsed post-program recovery period. This occurs by periodically activating control signals to turn on passive recovery switches to form a series of discharge pulses each dissipating a sub-threshold amount of charge. Such periodic pulsed dissipation may extend the duration of post-program recovery, but is not likely to be noticeable by the patient when the programming in the IPG changes from a first to a second program. Periodic pulsed dissipation of charge may also be used during a program, such as between stimulation pulses.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: Emanuel Feldman, Jordi Parramon, Goran N. Marnfeldt, Adam T. Featherstone
  • Publication number: 20200406042
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt, Kiran K. Gururaj
  • Patent number: 10874864
    Abstract: The disclosed techniques allow for externalizing errors from an implantable medical device using the device's charging coil, for receipt at an external charger or other external device. Transmission of errors in this manner is particularly useful when telemetry of error codes through a traditional telemetry coil in the implant is not possible, for example, because the error experienced is so fundamental as to preclude use of such traditional means. By externalizing the error via the charging coil, and though the use of robust error modulation circuitry in the implant designed to be generally insensitive to fundamental errors, the external charger can be consulted to understand the failure mode involved, and to take appropriate action.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: December 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Jordi Parramon, Christopher Britton Gould
  • Publication number: 20200398057
    Abstract: A system can utilize interleaving periods or waveforms to stimulate patient tissue and sense signals using the stimulation electrodes. For example, the system can utilize alternating therapeutic periods and sensing periods. As another example, the system can alternate between biphasic waveforms having opposite temporal orders of positive and negative phases. As another example, waveforms that differ in a parameter, such as amplitude or pulse width, can be interleaved to provide different information in the respective sensed signals.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Inventors: Rosana Esteller, Goran N. Marnfeldt, Michael A. Moffitt
  • Publication number: 20200346007
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Patent number: 10806930
    Abstract: An algorithm programmed into the control circuitry of a rechargeable-battery Implantable Medical Device (IMD) is disclosed that can quantitatively forecast and determine the timing of an early replacement indicator (tEOLi) and an IMD End of Life (tEOL). These forecasts and determinations of tEOLi and tEOL occur in accordance with one or more parameters having an effect on rechargeable battery capacity, such as number of charging cycles, charging current, discharge depth, load current, and battery calendar age. The algorithm consults such parameters as stored over the history of the operation of the IMD in a parameter log, and in conjunction with a battery capacity database reflective of the effect of these parameters on battery capacity, determines and forecasts tEOLi and tEOL. Such forecasted or determined values may also be used by a shutdown algorithm to suspend therapeutic operation of the IMD.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 20, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Rafael Carbunaru, Jordi Parramon
  • Patent number: 10792491
    Abstract: The problem of a potentially high amount of supra-threshold charge passing through the patient's tissue at the end of an Implantable Pulse Generator (IPG) program is addressed by circuitry that periodically dissipates only small amount of the charge stored on capacitances (e.g., DC-blocking capacitors) during a pulsed post-program recovery period. This occurs by periodically activating control signals to turn on passive recovery switches to form a series of discharge pulses each dissipating a sub-threshold amount of charge. Such periodic pulsed dissipation may extend the duration of post-program recovery, but is not likely to be noticeable by the patient when the programming in the IPG changes from a first to a second program. Periodic pulsed dissipation of charge may also be used during a program, such as between stimulation pulses.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 6, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Goran N. Marnfeldt, Adam T. Featherstone
  • Publication number: 20200305744
    Abstract: Sense amplifier circuits particularly useful in sensing neural responses in an Implantable Pulse Generator (IPG) are disclosed. The IPG includes a plurality of electrodes, with one selected as a sensing electrode and another selected as a reference to differentially sense the neural response in a manner that subtracts a common mode voltage (e.g., stimulation artifact) from the measurement. The circuits include a differential amplifier which receives the selected electrodes at its inputs, and comparator circuitries to assess each differential amplifier input to determine whether it is of a magnitude that is consistent with the differential amplifier's input requirements. Based on these determinations, an enable signal is generated which informs whether the output of the differential amplifier validly provides the neural response at any point in time.
    Type: Application
    Filed: March 17, 2020
    Publication date: October 1, 2020
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt
  • Patent number: 10786665
    Abstract: Digital-to-analog converter (DAC) circuitry for providing currents at electrodes of an Implantable Pulse Generator (IPG) is disclosed. The DAC circuitry includes at least one PDAC for sourcing current to the electrodes, and at least one NDAC for sinking current from the electrodes. The PDACs are powered with power supplies VH (the compliance voltage) and Vssh in a high power domain, and the NDACs are powered with power supplies Vcc and ground in a low power domain. VH may change during IPG operation, and Vssh preferably also changes with a fixed difference with respect to VH. Digital control signals to the PDACs are formed (and possibly converted into) the high power domain, and transistors used to build the PDACs are biased in the high power domain, and thus may also change with VH. This permits transistors in the PDACs and NDACs to be made from normal low-voltage logic transistors.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: September 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Philip L. Weiss, Pujitha Weerakoon, David M. Wagenbach, Emanuel Feldman, Kiran K. Gururaj
  • Patent number: 10780285
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 22, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt, Kiran K. Gururaj
  • Patent number: 10716932
    Abstract: Improved stimulation circuitry for controlling the stimulation delivered by an implantable stimulator is disclosed. The stimulation circuitry includes memory circuitry that stores pulse programs that define pulse shapes, steering programs that define electrode configurations, and aggregate programs that link a selected pulse program with a selected steering program. Each steering program defines the stimulation polarity and the allocation of current of the specified stimulation polarity for each of the pulse generator's electrodes. Each pulse program includes one or more pulse instructions, where each instruction defines the parameters of a single phase of the pulse program. Pulse definition circuits in the stimulation circuitry execute aggregate programs to generate stimulation waveforms, which stimulation waveforms can be generated simultaneously by the different pulse definition circuits.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 21, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Philip Leonard Weiss, Goran N. Marnfeldt, David Michael Wagenbach
  • Patent number: 10716937
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 21, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Patent number: 10632300
    Abstract: Improved circuitry for measuring analog values in an implantable pulse generator is disclosed. The measurement circuitry executes instructions that define the timing and parameters of measurements to be taken. The instructions include instructions that are responsive to different types of triggers issued by different pulse definition circuits, which pulse definition circuits generate different stimulation waveforms at different groups of electrodes. The measurement circuitry is configurable to update the groups of electrodes used to deliver stimulation.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: April 28, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: David Michael Wagenbach, Philip Leonard Weiss, Goran N. Marnfeldt, Kiran K. Gururaj, Pujitha Weerakoon
  • Publication number: 20200121912
    Abstract: Improved stimulation circuitry for controlling the stimulation delivered by an implantable stimulator is disclosed. The stimulation circuitry includes memory circuitry that stores pulse programs that define pulse shapes, steering programs that define electrode configurations, and aggregate programs that link a selected pulse program with a selected steering program. Each steering program defines the stimulation polarity and the allocation of current of the specified stimulation polarity for each of the pulse generator's electrodes. Each pulse program includes one or more pulse instructions, where each instruction defines the parameters of a single phase of the pulse program. Pulse definition circuits in the stimulation circuitry execute aggregate programs to generate stimulation waveforms, which stimulation waveforms can be generated simultaneously by the different pulse definition circuits.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Philip Leonard Weiss, Goran N. Marnfeldt, David Michael Wagenbach
  • Patent number: 10617872
    Abstract: This document discusses, among other things, systems and methods for programming a neuromodulation therapy to treat neurological or cardiovascular diseases. A system includes an ambulatory medical device (AMD) and at least one computer-readable storage medium including instructions executable on an external system. The instructions, when executed by the external system, causes a user interface in the external system to receive a waveform function and one or more modulation parameter values. The waveform function includes one or more modulation programs characterized by one or more modulation parameters. The instructions causes a compiler to translate the waveform function into virtual machine (VM) instructions, which can be transmitted to the AMD. The AMD includes a VM that executes the VM instructions, and generates one or more modulation waveform datasets. The AMD may generate and deliver electrostimulation therapy in accordance with the one or more modulation waveform datasets.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: April 14, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Goran N. Marnfeldt
  • Publication number: 20200101284
    Abstract: This document discusses, among other things, systems and methods for programming neuromodulation therapy to treat neurological or cardiovascular diseases. A system includes an input circuit that receives a modulation magnitude representing a level of stimulation intensity, a memory that stores a plurality of gain functions associated with a plurality of modulation parameters, and a electrostimulator that may generate and deliver an electrostimulation therapy. A controller may program the electrostimulator with the plurality of modulation parameters based on the received modulation magnitude and the plurality of gain functions, and control the electrostimulator to generate electrostimulation therapy according to the plurality of modulation parameters.
    Type: Application
    Filed: August 30, 2019
    Publication date: April 2, 2020
    Inventors: Goran N. Marnfeldt, Michael A. Moffitt
  • Publication number: 20200101277
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Patent number: 10589090
    Abstract: An implantable pulse generator (IPG) for an implantable medical device is disclosed herein. The IPG is capable of sensing the presence of an external magnetic field, such as a magnetic field associated with magnetic resonance imaging (MRI). The IPG includes a circuit that contains a magnetic core inductor and that is configured to boost a first voltage to a second voltage and use the second voltage to drive a current through a load. In a strong magnetic field, the magnetic core of the inductor becomes magnetically saturated, causing the inductance of the inductor to sharply drop. The inductance drop can be detected, for example, by detecting an increase in the second voltage. The circuit may be a boost converter circuit used to provide a compliance voltage for operation of the IPG.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: March 17, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt
  • Patent number: 10576265
    Abstract: Improved stimulation circuitry for controlling the stimulation delivered by an implantable stimulator is disclosed. The stimulation circuitry includes memory circuitry that stores pulse programs that define pulse shapes, steering programs that define electrode configurations, and aggregate programs that link a selected pulse program with a selected steering program. Each steering program defines the stimulation polarity and the allocation of current of the specified stimulation polarity for each of the pulse generator's electrodes. Each pulse program includes one or more pulse instructions, where each instruction defines the parameters of a single phase of the pulse program. Pulse definition circuits in the stimulation circuitry execute aggregate programs to generate stimulation waveforms, which stimulation waveforms can be generated simultaneously by the different pulse definition circuits.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Philip Leonard Weiss, Goran N. Marnfeldt, David Michael Wagenbach
  • Patent number: 10549091
    Abstract: Current generation circuitry for an Implantable Pulse Generator (IPG) is disclosed. The IPG comprises a plurality of PDACs and NDACs for souring currents to electrode nodes. The PDACs and NDACs can be configured as pairs to each provide stimulation in independent timing channels, or the PDACs can be combined and the NDACs can be combined to provide stimulation in a single timing channel. Further, the PDAC or NDAC can provide a plurality of source branch currents each of the same amplitude to the electrodes via a switch matrix, and pulse definition circuitry can be configured to always connect each of the source branch currents to one of the first one or more electrode nodes via the switch matrix.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: February 4, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt, Philip L. Weiss