Patents by Inventor Gordon D. DeMeester

Gordon D. DeMeester has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190217126
    Abstract: A radiation therapy system comprises a magnetic resonance imaging (MRI) system combined with an irradiation system, which can include one or more linear accelerators (linacs) that can emit respective radiation beams suitable for radiation therapy. The MRI system includes a split magnet system, comprising first and second main magnets separated by gap. A gantry is positioned in the gap between the main MRI magnets and supports the linac(s) of the irradiation system. The gantry is rotatable independently of the MM system and can angularly reposition the linac(s). Shielding can also be provided in the form of magnetic and/or RF shielding. Magnetic shielding can be provided for shielding the linac(s) from the magnetic field generated by the MM magnets. RF shielding can be provided for shielding the MRI system from RF radiation from the linac.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Applicant: ViewRay Technologies, Inc.
    Inventors: Shmaryu M. Shvartsman, Gordon D. DeMeester, James F. Dempsey, John Lester Patrick
  • Publication number: 20190219650
    Abstract: Gradient coil assemblies for horizontal magnetic resonance imaging systems (MRIs) and methods of their manufacture. Some embodiments may be used with open MRIs and can be used with an instrument placed in the gap of the MRI. In general, concentrations of conductors or radially oriented conductors may be moved away from the gap of the MRI so as to reduce eddy currents that may be induced in any instrument placed within the gap. Systems for directly cooling primary gradient and shield coils may be utilized and various coil supporting structures may be used to assist in coil alignment or to facilitate use of an instrument in the MRI gap.
    Type: Application
    Filed: November 19, 2018
    Publication date: July 18, 2019
    Applicant: ViewRay Technologies, Inc.
    Inventors: Shmaryu M. SHVARTSMAN, Gordon D. DEMEESTER, John L. PATRICK, James F. DEMPSEY
  • Patent number: 10132888
    Abstract: Gradient coil assemblies for horizontal magnetic resonance imaging systems (MRIs) and methods of their manufacture. Some embodiments may be used with open MRIs and can be used with an instrument placed in the gap of the MRI. In general, concentrations of conductors or radially oriented conductors may be moved away from the gap of the MRI so as to reduce eddy currents that may be induced in any instrument placed within the gap. Systems for directly cooling primary gradient and shield coils may be utilized and various coil supporting structures may be used to assist in coil alignment or to facilitate use of an instrument in the MRI gap.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: November 20, 2018
    Assignee: ViewRay Technologies, Inc.
    Inventors: Shmaryu M. Shvartsman, Gordon D. Demeester, John L. Patrick, James F. Dempsey
  • Publication number: 20170014644
    Abstract: A radiation therapy system comprises a magnetic resonance imaging (MRI) system combined with an irradiation system, which can include one or more linear accelerators (linacs) that can emit respective radiation beams suitable for radiation therapy. The MRI system includes a split magnet system, comprising first and second main magnets separated by gap. A gantry is positioned in the gap between the main MRI magnets and supports the linac(s) of the irradiation system. The gantry is rotatable independently of the MRI system and can angularly reposition the linac(s). Shielding can also be provided in the form of magnetic and/or RF shielding. Magnetic shielding can be provided for shielding the linac(s) from the magnetic field generated by the MRI magnets. RF shielding can be provided for shielding the MRI system from RF radiation from the linac.
    Type: Application
    Filed: August 19, 2016
    Publication date: January 19, 2017
    Inventors: SHMARYU M. SHVARTSMAN, Gordon D. Demeester, James F. Dempsey, John Lester Patrick
  • Patent number: 9535145
    Abstract: In preparation for acquiring PET image data, subject motion models are built based on physiologic signal monitoring and MR data is collected and used for improved PET imaging. The physiologic signal monitoring is also used during PET imaging, and the acquired MR data is used for prospective or retrospective gating of the PET image acquisition, or in the PET reconstruction for improved correction/imaging.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: January 3, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gordon D. Demeester, Michael A. Morich, Timothy P. Eagan
  • Publication number: 20160356869
    Abstract: A magnetic resonance imaging (MRI) system includes a split magnet system having a pair of MRI magnet housings separated by gap. A pair of main MRI magnets are disposed within respective MRI magnet housings. A plurality of buttress assemblies are attached to the MRI magnet housings. Some or all of the buttress assemblies are provided with removable connections to the MRI magnet housings. This allows for partial disassembly of the MRI system for improved transport and maneuverability for relocating the MRI system. The MRI system can include a gantry in the gap for supporting a radiation therapy system. Also, the removably buttress assemblies can be used for housing conduits, such as electrical and fluid conduits, between the pair of MRI magnet housings.
    Type: Application
    Filed: August 19, 2016
    Publication date: December 8, 2016
    Inventors: James F. Dempsey, John L. Patrick, Shmaryu M. Shvartsman, Gordon D. Demeester
  • Patent number: 9494667
    Abstract: An imaging method comprises: acquiring magnetic resonance data of a subject using a magnetic resonance component (30, 30?) disposed with the subject; acquiring nuclear imaging data of the subject with the magnetic resonance component disposed with the subject; determining a position of the magnetic resonance component respective to a frame of reference of the nuclear imaging data; and reconstructing the nuclear imaging data (60) to generate a nuclear image (62) of at least a portion of the subject. The reconstructing includes adjusting at least one of the nuclear imaging data and the nuclear image based on a density map (46) of the magnetic resonance component and the determined position of the magnetic resonance component respective to the frame of reference of the nuclear imaging data to correct the nuclear image for radiation absorption by the magnetic resonance component.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: November 15, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael A. Morich, Gordon D. Demeester, Daniel Gagnon
  • Patent number: 9423477
    Abstract: A magnetic resonance imaging (MRI) system includes a split magnet system having a pair of MRI magnet housings separated by gap. A pair of main MRI magnets are disposed within respective MRI magnet housings. A plurality of buttress assemblies are attached to the MRI magnet housings. Some or all of the buttress assemblies are provided with removable connections to the MRI magnet housings. This allows for partial disassembly of the MRI system for improved transport and maneuverability for relocating the MRI system. The MRI system can include a gantry in the gap for supporting a radiation therapy system. Also, the removably buttress assemblies can be used for housing conduits, such as electrical and fluid conduits, between the pair of MRI magnet housings.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: August 23, 2016
    Assignee: ViewRay Technologies, Inc.
    Inventors: James F. Dempsey, John L. Patrick, Shmaryu M. Shvartsman, Gordon D. DeMeester
  • Patent number: 9423479
    Abstract: A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 23, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johan A. Overweg, Volkmar Schulz, Torsten J. Solf, Gordon D. DeMeester, Michael A. Morich
  • Publication number: 20150077118
    Abstract: Gradient coil assemblies for horizontal magnetic resonance imaging systems (MRIs) and methods of their manufacture. Some embodiments may be used with open MRIs and can be used with an instrument placed in the gap of the MRI. In general, concentrations of conductors or radially oriented conductors may be moved away from the gap of the MRI so as to reduce eddy currents that may be induced in any instrument placed within the gap. Systems for directly cooling primary gradient and shield coils may be utilized and various coil supporting structures may be used to assist in coil alignment or to facilitate use of an instrument in the MRI gap.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Inventors: Shmaryu M. Shvartsman, Gordon D. Demeester, John L. Patrick, James F. Dempsey
  • Publication number: 20140347053
    Abstract: A magnetic resonance imaging (MRI) system includes a split magnet system having a pair of MRI magnet housings separated by gap. A pair of main MRI magnets are disposed within respective MRI magnet housings. A plurality of buttress assemblies are attached to the MRI magnet housings. Some or all of the buttress assemblies are provided with removable connections to the MRI magnet housings. This allows for partial disassembly of the MRI system for improved transport and maneuverability for relocating the MRI system. The MRI system can include a gantry in the gap for supporting a radiation therapy system. Also, the removably buttress assemblies can be used for housing conduits, such as electrical and fluid conduits, between the pair of MRI magnet housings.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 27, 2014
    Inventors: James F. Dempsey, John L. Patrick, Shmaryu M. Shvartsman, Gordon D. DeMeester
  • Patent number: 8896308
    Abstract: Gradient coil assemblies for horizontal magnetic resonance imaging systems (MRIs) and methods of their manufacture. Some embodiments may be used with open MRIs and can be used with an instrument placed in the gap of the MRI. In general, concentrations of conductors or radially oriented conductors may be moved away from the gap of the MRI so as to reduce eddy currents that may be induced in any instrument placed within the gap. Systems for directly cooling primary gradient and shield coils may be utilized and various coil supporting structures may be used to assist in coil alignment or to facilitate use of an instrument in the MRI gap.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 25, 2014
    Assignee: ViewRay Incorporated
    Inventors: Shmaryu M. Shvartsman, Gordon D. DeMeester, John L. Patrick, James F. Dempsey
  • Patent number: 8803524
    Abstract: A magnetic resonance imaging (MRI) system includes a split magnet system having a pair of MRI magnet housings separated by gap. A pair of main MRI magnets are disposed within respective MRI magnet housings. A plurality of buttress assemblies are attached to the MRI magnet housings. Some or all of the buttress assemblies are provided with removable connections to the MRI magnet housings. This allows for partial disassembly of the MRI system for improved transport and maneuverability for relocating the MRI system. The MRI system can include a gantry in the gap for supporting a radiation therapy system. Also, the removably buttress assemblies can be used for housing conduits, such as electrical and fluid conduits, between the pair of MRI magnet housings.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 12, 2014
    Assignee: ViewRay Incorporated
    Inventors: James F. Dempsey, John L. Patrick, Shmaryu M. Shvartsman, Gordon D. DeMeester
  • Publication number: 20140062486
    Abstract: A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Johan A. OVERWEG, Volkmar SCHULZ, Torsten J. SOLF, Gordon D. DeMEESTER, Michael A. MORICH
  • Patent number: 8604795
    Abstract: A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 10, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Johan A. Overweg, Volkmar Schulz, Torsten Solf, Gordon D. Demeester, Michael A. Morich
  • Patent number: 8525116
    Abstract: An imaging system includes positron emission tomography (PET) detectors (30) shrouded by broadband galvanic isolation (99) and coincidence detection electronics (50, 50ob), or other radiation detectors. A magnetic resonance scanner includes a main magnet (12, 14) and magnetic field gradient assembly (20, 20?, 22, 24) configured to acquire imaging data from a magnetic resonance examination region at least partially overlapping the examination region surrounded by the PET detectors. A radio frequency coil (80, 100) has plurality of conductors (66, 166) and a radio frequency screen (88, 188, 188EB, 188F) substantially surrounding the conductors to shield the coil at the magnetic resonance frequency. The radiation detectors are outside of the radio frequency screen. Magnetic resonance-compatible radiation collimators or shielding (60, 62) containing an electrically non-conductive and non-ferromagnetic heavy atom oxide material are disposed with the radiation detectors.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 3, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Volkmar Schulz, Torsten J. Solf, Gordon D. DeMeester, Michael A. Morich
  • Patent number: 8441259
    Abstract: A magnetic resonance coil comprises a first set of coil elements (54, 56, 80) operatively connectable with a transmit channel (66, 74) to couple with a transmit region of sensitivity for a selected load at a magnetic field strength greater than 3 Tesla, and a second set of coil elements (52, 54, 82) operatively connectable with a receive channel (66, 74) to couple with a receive region of sensitivity for the selected load at the magnetic field strength greater than 3 Tesla. The first set of coil elements is arranged proximate to but not surrounding the transmit region of sensitivity, and the second set of coil elements is arranged proximate to but not surrounding the receive region of sensitivity. The first set of coil elements and the second set of coil elements having at least one coil element (52, 56) not in common.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 14, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Zhiyong Zhai, Robert Gauss, Eddy Yu Ping Wong, Michael A. Morich, Kevin M. Nieman, Gordon D. DeMeester
  • Patent number: 8421462
    Abstract: A radio frequency coil assembly includes an annular conductor (20, 22, 120) configured to support a sinusoidal electrical current distribution at a magnetic resonance frequency, and a radio frequency shield (30, 32, 34, 52, 60, 61, 130) shielding the annular conductor in at least one direction, the radio frequency shield including at least one of (i) a cylindrical shield portion (30, 60, 61, 130) surrounding a perimeter of the annular conductor, and (ii) a planar shield portion (32, 34, 52) arranged generally parallel with the annular conductor. In a magnetic resonance scanner embodiment, a magnet (10) generates a static magnetic field (B0), a magnetic field gradient system (14) is configured to superimpose selected magnetic field gradients on the static magnetic field, and said radio frequency coil assembly is arranged with the annular conductor generally transverse to the static magnetic field (B0).
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: April 16, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Zhiyong Zhai, Michael A. Morich, Gordon D. Demeester
  • Patent number: 8378677
    Abstract: In a hybrid PET-MR system, PET detector elements (30) are added in the bore (14), in close proximity to the gradient coils (16). Fluid coolant is supplied to transfer heat from the PET detector elements (30). Thermal insulation (80) insulates the fluid coolant and the PET detector elements (30) from the gradient coils (16). In some embodiments, a first coolant path (90) is in thermal communication with the electronics, a second coolant path (92) is in thermal communication with the light detectors, and a thermal barrier (94, 96) is arranged between the first and second coolant paths such that the first and second coolant paths can be at different temperatures (Te, Td). In some embodiments a sealed heat pipe (110) is in thermal communication with a heat sink such that working fluid in the heat pipe undergoes vaporization/condensation cycling to transfer heat from the detector elements to the heat sink.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: February 19, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Michael A. Morich, Gordon D. Demeester, Jerome J. Griesmer, Torsten J. Solf, Volkmar Schulz, Bjoern Weissler
  • Patent number: 8334697
    Abstract: A generally cylindrical set of coil windings (10, 30, 80) includes primary coil windings (12, 32, 82) and shield coil windings (14, 34, 84) at a larger radial position than the primary coil windings, and an arcuate or annular central gap (16, 36, 86) that is free of coil windings, has an axial extent (W) of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors (24, 44, 94) disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet (62, 64) is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors (66) is disposed in the central gap of the generally cylindrical set of coil windings.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: December 18, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Johan A. Overweg, Volkmar Schulz, Torsten Solf, Gordon D. Demeester, Michael A. Morich