Patents by Inventor Gordon T. Emmerson

Gordon T. Emmerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11485833
    Abstract: Pre-impregnated composite material (prepreg) that can be cured/molded to form aerospace composite parts. The prepreg includes carbon reinforcing fibers and an uncured resin matrix. The resin matrix includes an epoxy resin component, polyethersulfone as a toughening agent, a thermoplastic particle component, a nanoparticle component and a curing agent.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: November 1, 2022
    Assignee: HEXCEL CORPORATION
    Inventors: Yan Zhu, Gordon T. Emmerson
  • Publication number: 20210122891
    Abstract: Pre-impregnated composite material (prepreg) that can be cured/molded to form aerospace composite parts. The prepreg includes carbon reinforcing fibers and an uncured resin matrix. The resin matrix includes an epoxy resin component, polyethersulfone as a toughening agent, a thermoplastic particle component, a nanoparticle component and a curing agent.
    Type: Application
    Filed: October 23, 2019
    Publication date: April 29, 2021
    Applicant: Hexcel Corporation
    Inventors: Yan ZHU, Gordon T. EMMERSON
  • Patent number: 8313830
    Abstract: Particle toughened, fiber-reinforced composites include a fiber region and an interlayer region between the fibers. The fiber region includes a plurality of fibers at least partially within a first polymer composition including a first base polymer formulation and a first plurality of toughening particles. The interlayer region includes a second polymer composition including a second base polymer formulation and at least one of the first plurality of toughening particles and a second plurality of toughening particles. Examples of first and second pluralities of toughening particles, respectively, may include core shell rubbers and polyimides. Increasing concentration of the first plurality of toughening particles may improve the composite toughness while preserving thermal properties of the composite, such as weight loss after extended duration exposure to elevated temperature.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: November 20, 2012
    Assignee: Cytec Technology Corp.
    Inventors: Mark Richard Bonneau, Jack Douglas Boyd, Gordon T. Emmerson, Scott D. Lucas, Stephen Jacob Howard, Spencer Donald Jacobs
  • Patent number: 8268926
    Abstract: Particle-toughened polymer compositions include a base polymer formulation and a plurality of toughening particles. In certain embodiments, the base polymer formulation includes bismaleimides or other polymer resins capable of high temperature service. A first plurality of toughening particles may include core shell rubbers. A second plurality of toughening particles may be selected from a variety of polymer compositions, including polyimides, polyether ketone (PEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyether imide, polyether sulfones, and polyphenylene oxide. It is found that increasing concentration of the core shell rubbers may improve the toughness of the composition while preserving thermal properties of the composition, such as glass transition temperature.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: September 18, 2012
    Assignee: Cytec Technology Corp.
    Inventors: Mark Richard Bonneau, Jack Douglas Boyd, Gordon T. Emmerson, Scott D. Lucas, Stephen J. Howard, Spencer Donald Jacobs
  • Publication number: 20120052287
    Abstract: Particle toughened, fiber-reinforced composites include a fiber region and an interlayer region between the fibers. The fiber region includes a plurality of fibers at least partially within a first polymer composition including a first base polymer formulation and a first plurality of toughening particles. The interlayer region includes a second polymer composition including a second base polymer formulation and at least one of the first plurality of toughening particles and a second plurality of toughening particles. Examples of first and second pluralities of toughening particles, respectively, may include core shell rubbers and polyimides. Increasing concentration of the first plurality of toughening particles may improve the composite toughness while preserving thermal properties of the composite, such as weight loss after extended duration exposure to elevated temperature.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 1, 2012
    Applicant: CYTEC TECHNOLOGY CORP.
    Inventors: Mark Richard Bonneau, Jack Douglas Boyd, Gordon T. Emmerson, Scott D. Lucas, Stephen Jacob Howard, Spencer Donald Jacobs
  • Patent number: 8080313
    Abstract: Particle toughened, fiber-reinforced composites include a fiber region and an interlayer region between the fibers. The fiber region includes a plurality of fibers at least partially within a first polymer composition including a first base polymer formulation and a first plurality of toughening particles. The interlayer region includes a second polymer composition including a second base polymer formulation and at least one of the first plurality of toughening particles and a second plurality of toughening particles. Examples of first and second pluralities of toughening particles, respectively, may include core shell rubbers and polyimides. Increasing concentration of the first plurality of toughening particles may improve the composite toughness while preserving thermal properties of the composite, such as weight loss after extended duration exposure to elevated temperature.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: December 20, 2011
    Assignee: Cytec Technology Corp.
    Inventors: Mark Richard Bonneau, Jack Douglas Boyd, Gordon T. Emmerson, Scott D. Lucas, Stephen J. Howard, Spencer Donald Jacobs
  • Publication number: 20100305274
    Abstract: Particle-toughened polymer compositions include a base polymer formulation and a plurality of toughening particles. In certain embodiments, the base polymer formulation includes bismaleimides or other polymer resins capable of high temperature service. A first plurality of toughening particles may include core shell rubbers. A second plurality of toughening particles may be selected from a variety of polymer compositions, including polyimides, polyether ketone (PEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyether imide, polyether sulfones, and polyphenylene oxide. It is found that increasing concentration of the core shell rubbers may improve the toughness of the composition while preserving thermal properties of the composition, such as glass transition temperature.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 2, 2010
    Applicant: CYTEC TECHNOLOGY CORP.
    Inventors: Mark Richard Bonneau, Jack Douglas Boyd, Gordon T. Emmerson, Scott D. Lucas, Stephen Jacob Howard, Spencer Donald Jacobs
  • Publication number: 20100304119
    Abstract: Particle toughened, fiber-reinforced composites include a fiber region and an interlayer region between the fibers. The fiber region includes a plurality of fibers at least partially within a first polymer composition including a first base polymer formulation and a first plurality of toughening particles. The interlayer region includes a second polymer composition including a second base polymer formulation and at least one of the first plurality of toughening particles and a second plurality of toughening particles. Examples of first and second pluralities of toughening particles, respectively, may include core shell rubbers and polyimides. Increasing concentration of the first plurality of toughening particles may improve the composite toughness while preserving thermal properties of the composite, such as weight loss after extended duration exposure to elevated temperature.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 2, 2010
    Applicant: CYTEC TECHNOLOGY CORP.
    Inventors: Mark Richard Bonneau, Jack Douglas Boyd, Gordon T. Emmerson, Scott D. Lucas, Stephen Jacob Howard, Spencer Donald Jacobs
  • Publication number: 20100076120
    Abstract: A particle filled resin system is produced by cavitation. A method of producing a filled resin system comprises providing a resin and a filler, and subjecting the resin and filler to cavitation. A method of changing the rheology of a filled resin system comprises subjecting the filled resin system to cavitation.
    Type: Application
    Filed: September 6, 2007
    Publication date: March 25, 2010
    Applicant: NATIONAL STARCH AND CHEMICAL INVESTMENT HOLDING CO
    Inventors: Gordon T. Emmerson, David M. Shenfield, Peter Saxton, Ihab Farid, Chih-Min Cheng, Daniel J. Duffy