Patents by Inventor Govardhan Ganireddy

Govardhan Ganireddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180198376
    Abstract: Systems and methods for grounding power generation units with silicon carbide MOSFET power converters are provided. A power generation unit can include a power generator configured to generate multiphase alternating current power at a first voltage. The power generation unit can also include a power converter configured to convert the multiphase alternating current power from the power generator at the first voltage to multiphase alternating current power at a second voltage. The power converter can include one or more silicon carbide MOSFETs and at least one heatsink configured to remove heat from the power converter. The at least one heatsink of the power converter can be electrically connected to a local ground formed by one or more components of the power generation unit.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 12, 2018
    Inventors: Robert Gregory Wagoner, Govardhan Ganireddy, Saurabh Shukla, Ravisekhar Nadimpalli Raju, Harold Robert Schnetzka
  • Publication number: 20180198393
    Abstract: Systems and methods for protecting the redundancy of inverter blocks are provided. In one example implementation, a system can include a plurality of inverter blocks. Each inverter block can include a first conversion entity configured to convert DC power to AC power, a second conversion entity configured to convert AC power to DC power, and a third conversion entity configured to convert DC power to AC power. An isolation transformer can be coupled between the first conversion entity and the second conversion entity. The system includes an inverter block switching element coupled to an output of each inverter block. A protection element is disposed in each inverter block. The system includes one or more control devices configured to isolate at least one of the plurality of inverter blocks based at least in part on a status of the protection element disposed in the inverter block.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 12, 2018
    Inventors: Robert Gregory Wagoner, Govardhan Ganireddy, Saurabh Shukla, Ravisekhar Nadimpalli Raju, Harold Robert Schnetzka
  • Publication number: 20180198392
    Abstract: Systems and methods for grounding power generation systems with silicon carbide MOSFET power converters are provided. A power generation system can include a power generator comprising a multiphase rotor configured to generate multiphase alternating current power at a first voltage and a power converter comprising one or more silicon carbide MOSFETs and an isolation transformer. The power converter can be configured to convert the multiphase alternating current power from the power generator at the first voltage to multiphase alternating current power at a second voltage. The power generation system can be electrically grounded to shunt a leakage current associated with the isolation transformer of the power converter to a ground.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 12, 2018
    Inventors: Robert Gregory Wagoner, Govardhan Ganireddy, Saurabh Shukla, Ravisekhar Nadimpalli Raju, Harold Robert Schnetzka
  • Patent number: 10018185
    Abstract: A system for commissioning a wind turbine is provided. The system includes a test wind turbine, one or more additional wind turbines coupled to the test wind turbine, and a control system. The control system includes a first control module for controlling the one or more additional wind turbines to act as a power source and provide power to the test wind turbine. The control system also includes a second control module for controlling the one or more additional wind turbines to act as a load for dissipating test power generated by the test wind turbine.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: July 10, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sumitha Mohan, Minesh Ashok Shah, Rajni Kant Burra, Govardhan Ganireddy, Akshay Krishnamurty Ambekar, Murali Mohan Baggu Data Venkata Satya, Allen Michael Ritter
  • Publication number: 20180187653
    Abstract: A hybrid power generation system is presented. The system includes a first power generation subsystem including a prime mover driving a generator including a rotor and a stator, one or more first conversion units coupled to at least one of the rotor and the stator, a first direct current (DC) link, and one or more second conversion units coupled to a corresponding one or more first conversion units via the first DC link. The system includes one or more second power generation subsystems coupled to the first power generation subsystem and one or more power conversion subunits including one or more first bridge circuits coupled to a corresponding one or more second bridge circuits via one or more transformers, where at least one of the one or more second power generation subsystems and the first power generation subsystem includes the one or more power conversion subunits.
    Type: Application
    Filed: July 28, 2017
    Publication date: July 5, 2018
    Inventors: Yashomani Y. Kolhatkar, Govardhan Ganireddy, Ravisekhar Nadimpalli Raju, Rajni Kant Burra, Arvind Kumar Tiwari, John Leo Bollenbecker
  • Publication number: 20180191280
    Abstract: Power converters for use in wind turbine systems are included. For instance, a wind turbine system can include a wind driven doubly fed induction generator having a stator and a rotor. The stator is configured to provide a medium voltage alternating current power on a stator bus of the wind turbine system. The wind turbine system includes a power converter configured to convert a low voltage alternating current power provided by the rotor to a medium voltage multiphase alternating current output power suitable for provision to an electrical grid. The power converter includes a plurality conversion modules. Each conversion module includes a plurality of bridge circuits. Each bridge circuit includes a plurality of silicon carbide switching devices coupled in series. Each conversion module is configured to provide a single phase of the medium voltage multiphase alternating current output power on a line bus of the wind turbine system.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 5, 2018
    Inventors: Robert Gregory Wagoner, Govardhan Ganireddy, Saurabh Shukla, Rajni Kant Burra, Ravisekhar Nadimpalli Raju, Rui Zhou, Rajib Datta, John Leo Bollenbecker
  • Publication number: 20180187652
    Abstract: Power converters for use in wind turbine systems are included. For instance, a wind turbine system can include a full power generator having a stator and a rotor. The generator is configured to provide a low voltage alternating current power on a stator bus of the wind turbine system. The wind turbine system includes a power converter configured to convert the low voltage alternating current power provided on the stator bus to a medium voltage multiphase alternating current output power suitable for provision to the electrical grid. The power converter includes a plurality of conversion modules, each conversion module comprising a plurality of bridge circuits. Each bridge circuit includes a plurality of silicon carbide switching devices coupled in series. Each conversion module is configured to provide a single phase of the medium voltage multiphase alternating current output power on a line bus of the wind turbine system.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 5, 2018
    Inventors: Robert Gregory Wagoner, Govardhan Ganireddy, Saurabh Shukla, Rajni Kant Burra, Ravisekhar Nadimpalli Raju, Rui Zhou, Rajib Datta, John Leo Bollenbecker
  • Publication number: 20180191166
    Abstract: Power converters for use in energy systems are included. For instance, an energy system can include an input power source configured to provide a low voltage direct current power. The energy system can include a power converter configured to convert the low voltage direct current power provided by the input power source to a medium voltage multiphase alternating current output power suitable for provision to an alternating current power system. The power converter can include a plurality conversion modules. Each conversion module includes a plurality of bridge circuits. Each bridge circuit includes a plurality of silicon carbide switching devices coupled in series. Each conversion module is configured to provide a single phase of the medium voltage multiphase alternating current output power on a line bus of the energy system.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 5, 2018
    Inventors: Robert Gregory Wagoner, Govardhan Ganireddy, Saurabh Shukla, Rajni Kant Burra, Ravisekhar Nadimpalli Raju, Rui Zhou, Rajib Datta, John Leo Bollenbecker
  • Patent number: 9920743
    Abstract: A wind turbine includes wind turbine blades, a wind turbine rotor coupled to the wind turbine blades, a wind turbine generator coupled to the wind turbine rotor, a wind turbine converter coupled to the wind turbine generator, a controllable brake comprising one or more sources of controllable rotor torque adjustment for providing a first level of torque adjustment, a discrete brake for more coarsely providing a second level of torque adjustment, and a controller programmed for responding to a deceleration event by determining a required torque adjustment for braking, determining a sequence of applying the controllable brake and the discrete brake for driving a combination of the first and second levels of torque adjustment towards the required torque adjustment, and providing control signals for decelerating the wind turbine.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: March 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Pranav Agarwal, Govardhan Ganireddy, Mark Edward Cardinal, Venkata Krishna Vadlamudi
  • Patent number: 9915243
    Abstract: A system for automatic generation control in a wind farm is provided. The system includes a wind farm controller for controlling the plurality of energy storage elements. The wind farm controller receives an automatic generation control set point from an independent system operator, generates a farm-level storage power set point for the wind farm based on the automatic generation control set point, generates individual storage power set points for the plurality of energy storage elements based on states of charge of the respective energy storage elements, and controls the plurality of energy storage elements based on the individual storage power set points for dispatching storage power to perform automatic generation control.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 13, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Deepak Raj Sagi, Mark Edward Cardinal, Avijit Saha, Rajni Kant Burra, Govardhan Ganireddy
  • Publication number: 20180034264
    Abstract: The present disclosure is directed to a protection system for a wind turbine power system connected to a power grid. The protection system includes a main brake circuit having at least one brake resistive element and at least one brake switch element, a battery system, and a controller. The brake resistive element is coupled to at least one of a DC link of a power converter of the wind turbine power system, windings of a rotor of the generator, or windings of a stator of a generator of the wind turbine power system via the brake switch element. The battery system is coupled to the generator via a battery switch element. In addition, the controller is configured to disconnect the power converter and the generator from the power grid and connect at least one of the main brake circuit or the battery system to the generator in response to detecting an electromagnetic (EM) torque loss event so as to generate an EM torque.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 1, 2018
    Inventors: Robert Gregory Wagoner, Govardhan Ganireddy, Yashomani Kolhatkar
  • Patent number: 9866160
    Abstract: A system includes a source side converter for being electrically coupled to a generator of a power source, a line side converter for being electrically coupled to a power network, a DC link coupled between the source side converter and the line side converter, and a controller for generating source side switching signals based on a current or torque of the generator and a virtual impedance signal for system damping or reactive power compensation when at least one detected signal of the system is not normal. A method for controlling the system is also included.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 9, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Zhuohui Tan, Jinping Gao, Rajni Kant Burra, Govardhan Ganireddy
  • Patent number: 9709037
    Abstract: A method for controlling a wind farm including a plurality of wind turbines is provided. The method includes computing an error between a farm-level base point power and a measured wind farm power, generating an aggregated farm-level active power set point for the wind farm based on the error and a frequency response set point, generating aggregated turbine-level active power set points based on the aggregated farm-level active power set point, transmitting the aggregated turbine-level active power set points, determining aero power set points and storage power set points for the respective wind turbines and energy storage elements of the respective wind turbines from the aggregated turbine-level active power set points, and controlling the plurality of wind turbines for delivering aero power based on the respective aero power set points and controlling the energy storage elements to provide storage power based on the respective storage power set points.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 18, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Deepak Raj Sagi, Avijit Saha, Govardhan Ganireddy, Mark Edward Cardinal, Rajni Kant Burra
  • Patent number: 9677540
    Abstract: A yaw backup system is provided. The yaw backup system includes an energy storage medium for storing auxiliary power. The yaw backup system also includes a yaw controller for coordinating delivery of power from the energy storage medium to a yaw motor for controlling a yaw angle of a wind turbine during grid loss conditions. The yaw controller executes the steps of receiving wind direction signals over time from a sensor, altering a tolerance level of a wind turbine based on changes in the wind direction signals over time and controlling delivery of power to the yaw motor from the auxiliary power of the energy storage medium based on the tolerance level to control the yaw angle for reducing a load on the wind turbine induced by wind.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: June 13, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Rajni Kant Burra, Govardhan Ganireddy, Victor Robert Abate, Keith Andrew Longtin, Herman Lucas Norbert Wiegman, Robert William Delmerico
  • Publication number: 20170114775
    Abstract: A wind turbine includes wind turbine blades, a wind turbine rotor coupled to the wind turbine blades, a wind turbine generator coupled to the wind turbine rotor, a wind turbine converter coupled to the wind turbine generator, a controllable brake comprising one or more sources of controllable rotor torque adjustment for providing a first level of torque adjustment, a discrete brake for more coarsely providing a second level of torque adjustment, and a controller programmed for responding to a deceleration event by determining a required torque adjustment for braking, determining a sequence of applying the controllable brake and the discrete brake for driving a combination of the first and second levels of torque adjustment towards the required torque adjustment, and providing control signals for decelerating the wind turbine.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 27, 2017
    Inventors: Pranav Agarwal, Govardhan Ganireddy, Mark Edward Cardinal, Venkata Krishna Vadlamudi
  • Patent number: 9473057
    Abstract: A system for wind power dispatch that includes a wind farm controller for controlling operation of wind turbines in a wind farm and regulating real time power output of the wind farm. The system also includes a wind power dispatch management system for computing a difference between a predefined power output and the real time power output and dispatching a transient wind farm reserve to reduce the difference or, if the transient wind farm reserve is insufficient to reduce the difference, additionally or alternatively dispatching a storage reserve to reduce the difference.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: October 18, 2016
    Assignee: General Electric Company
    Inventors: Ranji Kant Burra, Minesh Ashok Shah, Govardhan Ganireddy, Victor Robert Abate, Venkatarao Ryali, Akshay Ambekar
  • Publication number: 20160197559
    Abstract: A system includes a source side converter for being electrically coupled to a generator of a power source, a line side converter for being electrically coupled to a power network, a DC link coupled between the source side converter and the line side converter, and a controller for generating source side switching signals based on a current or torque of the generator and a virtual impedance signal for system damping or reactive power compensation when at least one detected signal of the system is not normal. A method for controlling the system is also included.
    Type: Application
    Filed: December 1, 2015
    Publication date: July 7, 2016
    Inventors: Zhuohui TAN, Jinping GAO, Rajni Kant BURRA, Govardhan Ganireddy
  • Publication number: 20160049792
    Abstract: A multi-farm wind power dispatch management system is provided which includes wind turbine dispatch controllers for controlling wind power dispatch of respective wind farm components and wind farm dispatch management systems for receiving respective wind farm component operating parameters and generating respective farm-level operating parameters. The system also includes group dispatch management systems for receiving the farm-level operating parameters and generating respective group level operating parameters.
    Type: Application
    Filed: March 26, 2014
    Publication date: February 18, 2016
    Applicant: General Electric Company
    Inventors: Rajni Kant BURRA, Avijit SAHA, Venkatarao RYALI, Govardhan GANIREDDY, Akshay Krishnamurty AMBEKAR, Deepak Raj SAGI
  • Patent number: 9251980
    Abstract: In one aspect, an apparatus, such as an electrical system, is provided. The electrical system can include a pair of conductors across which an arc is sporadically supported, the arc including load current from a load circuit. The electrical system can also include an energy source that is separate from the load circuit and configured to selectively charge an electrode assembly. The conductors and electrode assembly can be configured such that the arc, when present, will be lengthened or constricted due to the charge on the electrode assembly.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Thangavelu Asokan, Thomas Frederick Papallo, Jr., Govardhan Ganireddy
  • Publication number: 20150240784
    Abstract: A system for automatic generation control in a wind farm is provided. The system includes a wind farm controller for controlling the plurality of energy storage elements. The wind farm controller receives an automatic generation control set point from an independent system operator, generates a farm-level storage power set point for the wind farm based on the automatic generation control set point, generates individual storage power set points for the plurality of energy storage elements based on states of charge of the respective energy storage elements, and controls the plurality of energy storage elements based on the individual storage power set points for dispatching storage power to perform automatic generation control.
    Type: Application
    Filed: February 18, 2015
    Publication date: August 27, 2015
    Inventors: Deepak Raj SAGI, Mark Edward CARDINAL, Avijit SAHA, Rajni Kant BURRA, Govardhan GANIREDDY