Patents by Inventor Gregory A. Trees

Gregory A. Trees has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160175028
    Abstract: A surgical end effector has a first jaw comprising a first electrode and a second jaw, wherein at least one of the first jaw and the second jaw is movable relative to the other one of the first jaw and the second jaw to transition the end effector between an open configuration, an approximated configuration, and a fully approximated configuration. The second jaw includes a second electrode and a spacer extending from the second electrode, wherein the spacer is configured to maintain a predetermined distance between the first electrode and the second electrode when the end effector is in the fully approximated configuration, wherein the spacer is in contact with the first electrode in the fully approximated configuration, wherein the spacer is spaced apart from the first electrode in the open configuration, and wherein the spacer is comprised of a semi-conductive material.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 23, 2016
    Inventors: Gregory A. Trees, Geoffrey S. Strobl
  • Publication number: 20160175050
    Abstract: A surgical instrument includes a body, an elongate shaft extending distally from the body, an end effector disposed at a distal end of the elongate shaft, and a firing beam. The end effector has a first jaw and a second jaw. The first jaw is pivotable toward and away from the second jaw to capture tissue. The end effector further comprises at least one electrode. The at least one electrode is operable to apply RF energy to tissue captured between the first jaw and the second jaw.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Susan Arshonsky, Catherine A. Corbett, Megan A. Broderick, Geoffrey S. Strobl, Gregory A. Trees
  • Patent number: 9333025
    Abstract: A medical instrument is disclosed. The medical instrument includes a housing, a control lever rotatably coupled to the housing, at least one electrical contact, a radio frequency (RF) generation circuit coupled to and operated by the battery and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact and an initialization clip coupled to housing and the control lever to prevent operation of the RF generation circuit and movement of the control lever.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: May 10, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Gavin M. Monson, Gregory A. Trees, Gordon J. Leather, David J. Stocks, David I. Ruddenklau, Robin M. Lee, Rebecca A. Wilkins, Wai T. Chan
  • Patent number: 9326788
    Abstract: A robotically controlled surgical tool including a lockout mechanism is provided. The surgical tool may comprise an instrument mounting portion. The instrument mounting portion includes a housing, a plate, a shaft assembly comprising an end effector, and a coupler to couple the shaft assembly to the instrument mounting portion. The end effector comprises a first jaw member and a second jaw member, the first and second jaw members defining a channel therebetween, and a blade slideably receivable within the channel to cut tissue located between the first and second jaw members. The surgical tool may include an actuation mechanism to actuate the end effector to provide reciprocating movement of the blade within the channel. A lockout mechanism is coupled to the actuation mechanism. The lockout mechanism may selectively enable reciprocating movement of the blade. An interface mechanically and electrically couples the instrument mounting portion to a robotic manipulator.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 3, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Jonathan T. Batross, Gregory A. Trees, Foster B. Stulen, Randolph Stewart, Chad P. Boudreaux
  • Publication number: 20160106509
    Abstract: Various embodiments of surgical robot control systems are disclosed. In one example embodiment, the surgical robot control system comprises a housing. A controller is located within the housing and is coupled to a socket. The socket receives a handheld surgical user interface therein to control a surgical instrument. The surgical instrument is connected to the surgical robot and comprises an end effector and a mechanical interface to manipulate the end effector. The mechanical interface is coupled to the controller. At least one sensor is coupled to the controller and the socket to convert movement of the handheld surgical user interface into electrical signals corresponding to the movement of the surgical instrument. At least one feedback device is coupled to the controller to provide feedback to a user. The feedback is associated with a predetermined function of the surgical instrument.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 21, 2016
    Inventors: Barry C. Worrell, Geoffrey S. Strobl, Gregory A. Trees, Jonathan T. Batross, Nicholas G. Molitor, Kristen T. Shoger, David K. Norvell, Michael J. Andreyko, Gregory W. Johnson, Shawn C. Snyder, Chad P. Boudreaux
  • Patent number: 9314292
    Abstract: A medical instrument includes a housing, an RF generation circuit activation button coupled to an activation button lever supported by the housing. The activation button lever includes a top surface, the activation button lever rotatable about an activation button pivot point. A cutting blade is operably coupled to a sheath. A control lever is supported by the housing and pivotally coupled to a trigger lever including a projection to engage the top surface of the activation button lever and to control the actuation of the cutting blade by actuating the sheath in a distal direction by rotatably moving the control lever proximally about a trigger pivot point. The top surface of the activation button lever and the projection of the trigger lever remain engaged to prevent actuation of the cutting blade until the activation button is fully rotatably moved proximally about the activation button pivot.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: April 19, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Gregory A. Trees, Randolph Stewart, Wai T. Chan, Thomas B. Jackson
  • Patent number: 9283027
    Abstract: A medical instrument is disclosed. The medical instrument includes at least one electrical contact, a radio frequency (RF) generation circuit coupled to and operated by the battery and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact, a battery discharge circuit coupled to the RF generation circuit, a processor coupled to the battery discharge circuit, and a memory coupled to the processor. The memory stores computer instructions that when executed cause the processor to monitor battery capacity and send a signal to the battery discharge circuit to discharge a battery coupled to the battery discharge circuit when the battery capacity falls below a predetermined threshold.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 15, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Gavin M. Monson, Gregory A. Trees, Gordon J. Leather, John Hefin Bowen Evans, David I. Ruddenklau, Alan E. Green, Paul C. Roberts, Paulo Alexandre da Torre Pinheiro, Clive Styler
  • Patent number: 9254171
    Abstract: An apparatus comprises an end effector, a shaft, and a handpiece. The end effector is operable to manipulate tissue. The shaft is in communication with the end effector. The shaft includes a firing beam operable to actuate a portion of the end effector. The handpiece comprises a pivoting trigger that is operable to distally advance a firing beam driver to advance the firing beam. The handpiece also comprises an activation button and lockout assembly. The lockout assembly is movable between a locked and unlocked state. In the locked state, the lockout assembly blocks a portion of the firing beam driver from advancing. In the unlocked state, the lockout assembly allows the firing beam driver to advance. The activation button switches is operable to unlock the lockout assembly.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 9, 2016
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Gregory A. Trees, Randolph C. Stewart, Alex W. Kiturkes, William A. Crawford, Patrick J. Minnelli
  • Patent number: 9241758
    Abstract: An apparatus comprises a body, a shaft, an end effector, and a firing beam. The shaft extends distally from the body. The end effector is positioned at the distal end of the shaft. The end effector comprises a first jaw and a second jaw, with the first jaw being pivotable toward the second jaw. The firing beam is operable to translate relative to the end effector to thereby drive the first jaw toward the second jaw. The firing beam includes a deformable portion operable to deform in response to a stress imposed by the end effector on the firing beam as the jaws clamp on dense or thick tissue. The deformable portion is defined in part by a cutout. A compliance restriction feature restricts deformation in the firing beam. A resilient member biases the firing beam to a non-deformed configuration.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 26, 2016
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Paul T. Franer, Zhifan F. Huang, Jerome R. Morgan, Frederick E. Shelton, IV, Bret W. Smith, Richard W. Timm, Gregory A. Trees
  • Patent number: 9198714
    Abstract: Various embodiments of surgical robot control systems are disclosed. In one example embodiment, the surgical robot control system comprises a housing. A controller is located within the housing and is coupled to a socket. The socket receives a handheld surgical user interface therein to control a surgical instrument. The surgical instrument is connected to the surgical robot and comprises an end effector and a mechanical interface to manipulate the end effector. The mechanical interface is coupled to the controller. At least one sensor is coupled to the controller and the socket to convert movement of the handheld surgical user interface into electrical signals corresponding to the movement of the surgical instrument. At least one feedback device is coupled to the controller to provide feedback to a user. The feedback is associated with a predetermined function of the surgical instrument.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: December 1, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Barry C. Worrell, Geoffrey S. Strobl, Gregory A. Trees, Jonathan T. Batross, Nicholas G. Molitor, Kristen T. Shoger, David K. Norvell, Michael J. Andreyko, Gregory W. Johnson, Shawn C. Snyder
  • Publication number: 20150313677
    Abstract: A system for operating a catheter having a distal end adapted to be navigated in the body, and a proximal end having a handle with a translatable control and a rotatable control for acting on the distal end of the device includes a support for receiving and engaging the handle of the catheter; a translation mechanism for advancing and retracting the support to advance and retract a catheter whose handle is received in the support; a rotation mechanism for rotating the support to rotate a catheter whose handle is received in the support; a translation operator for engaging the translatable control of a catheter whose handle is received in the support and operating the translatable control to act on the distal end of the device; and a rotation operator for engaging the rotatable control of a catheter whose handle is received in the support and operating the rotatable control to act on the distal end of the device.
    Type: Application
    Filed: April 28, 2015
    Publication date: November 5, 2015
    Inventors: Brian L. Kidd, Nathan Kastelein, Gregory A. Trees, Kevin D. Predmore, Gregory S. Kramer, Michael S. Ulrich, James B. Gleeson, Jeffrey R. Held, Timothy M. Blum
  • Publication number: 20150297957
    Abstract: Golf club heads are releasably engaged with shafts so that the club heads and shafts can be readily interchanged and/or so that the shaft position with respect to the club head can be readily changed. Golf clubs are provided that have spherical releasable connections between the golf club head and the golf club shaft along with head/shaft position adjusting features to allow interchange of shafts and heads and to allow modification of the head/shaft positioning properties. Assemblies for connecting the club head and shaft may include: a shaft adapter, a shaft retainer, and a hosel insert located within an interior chamber of the club head. The club head and shaft may be changed by releasing the securing system and exchanging the original parts with different parts. Furthermore, the shaft adapter may be rotated within the hosel insert to create different angles from the shaft so as to allow adjustment of the shaft position with respect to the club head.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Inventors: Raymond J. Sander, James S. Thomas, Vincent J. Contini, James A. Prescott, Matthew P. Rubal, Gregory A. Trees
  • Publication number: 20150289925
    Abstract: A surgical system includes a module for compiling a plurality of operational parameters of the surgical system during a plurality of treatment cycles performed by the surgical system. The module includes a processor and a memory unit, the processor configured to store in the memory unit values of the plurality of operational parameters associated with each of the plurality of treatment cycles, wherein the processor is configured to identify a subset of the stored values of the plurality of operational parameters temporally proximate to an intervening event.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 15, 2015
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Aaron C. Voegele, Phillip H. Clauda, Kevin L. Houser, Robert A. Kemerling, Mark A. Davison, Foster B. Stulen, Gregory A. Trees
  • Publication number: 20150282822
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 8, 2015
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner
  • Publication number: 20150282823
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 8, 2015
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20150282825
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 8, 2015
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20150282824
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 8, 2015
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20150272602
    Abstract: In various embodiments, a surgical instrument is disclosed. The surgical instrument comprises a handle assembly having a closure trigger, a closure actuator coupled to the closure trigger at a first pivot, and a closure spring. The closure actuator moves proximally on a longitudinal axis in response to actuation of the closure trigger. The closure spring applies a force vector to the closure spring tangential to the longitudinal axis. A shaft assembly is coupled to the handle assembly. An end effector is coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly comprising a first jaw member and a second jaw member. The first jaw member is pivotally moveable with respect to the second jaw member. At least one of the first and second jaw members are operatively coupled to the closure actuator.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 1, 2015
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Chad P. Boudreaux, Catherine A. Corbett, Gregory A. Trees, Scott R. Bingham
  • Publication number: 20150272659
    Abstract: In various embodiments, a surgical instrument is disclosed. In one embodiment, the surgical instrument comprises a handle assembly. The handle assembly comprises a closure trigger, a push plate, a clamp plate, and a firing plate. Actuation of the closure trigger rotates the push plate. Rotation of the push plate to a first rotation rotates the clamp plate and rotation between the first rotation and a second rotation rotates the firing plate. A shaft assembly is coupled to the handle assembly. An end effector is coupled to the shaft assembly. The end effector comprises a jaw assembly. The jaw assembly defines a longitudinal slot. Rotation of the clamp plate pivotally moves a first jaw member from an open position to a closed position relative to a second jaw member. A cutting member is deployable within the longitudinal slot.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 1, 2015
    Applicant: ETHICON ENDO-SURGERY, INC.
    Inventors: Chad P. Boudreaux, John M. Sarley, Gregory A. Trees, Catherine A. Corbett
  • Publication number: 20150272660
    Abstract: A surgical instrument includes a handle assembly and an end effector. The handle assembly includes a trigger, a push plate coupled to the trigger, wherein actuation of the trigger rotates the push plate, a clamp plate operably coupled to the push plate, wherein actuation of the trigger to a first rotation rotates the clamp plate, and a firing plate operably coupled to the push plate, wherein actuation of the trigger between the first rotation and a second rotation rotates the firing plate. The end effector includes a jaw assembly which includes a first jaw member and a second jaw member, wherein rotation of the clamp plate transitions the jaw assembly between an open configuration and an approximated configuration by moving at least one of the first jaw member and the second jaw member relative to the other one of the first jaw member and the second jaw member.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 1, 2015
    Inventors: Chad P. Boudreaux, John M. Sarley, Gregory A. Trees, Catherine A. Corbett