Patents by Inventor Gregory J. Shafer

Gregory J. Shafer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200071514
    Abstract: The disclosure relates to a curable composition comprising: a polymerizable epoxy-acrylate resin composition having a complex viscosity at 25° C. and 1 Hz frequency of at least about 4500 Pa-s and a probe tack peak force of at least about 300 kPa; and abrasive particles partially or fully embedded in the polymerizable epoxy-acrylate resin composition. The disclosure also relates to cured compositions formed from such curable compositions, wherein the abrasive particles are partially or fully embedded in the cured composition. In addition, the disclosure relates to abrasive articles made from such cured compositions as well as methods for making abrasive articles.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 5, 2020
    Inventors: Kathleen S. Shafer, Rebecca A. Putans, Ernest L. Thurber, Cyrus A. Anderson, Corinne E. Lipscomb, Thomas J. Nelson, Gregory P. Sorenson, Chainika Jangu
  • Patent number: 10472491
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 12, 2019
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Patent number: 10266670
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: April 23, 2019
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Publication number: 20180171195
    Abstract: The invention pertains to heat transfer compositions, particularly to automobile refrigerants comprising a hydrofluoroalkene, an iodocarbon, and at least one lubricant having hydrogen atoms and carbon atoms, wherein no more than 17% of the total number of hydrogen atoms which are attached to a carbon atom are tertiary hydrogen atoms.
    Type: Application
    Filed: February 14, 2018
    Publication date: June 21, 2018
    Inventors: Raymond H. Thomas, Rajiv R. Singh, George J. Samuels, Ian Shankland, David P. Wilson, Roy P. Robinson, Michael Van Der Puy, John L. Welch, Gregory J. Shafer, Mark W. Spatz, Ryan Hulse
  • Patent number: 9988506
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 5, 2018
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates GmbH
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Patent number: 9920230
    Abstract: The invention pertains to heat transfer compositions, particularly to automobile refrigerants comprising a hydrofluoroalkene, an iodocarbon, and at least one lubricant having hydrogen atoms and carbon atoms, wherein no more than 17% of the total number of hydrogen atoms which are attached to a carbon atom are tertiary hydrogen atoms.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: March 20, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Raymond H. Thomas, Rajiv R. Singh, George J. Samuels, Ian Shankland, David P. Wilson, Roy P. Robinson, Michael Van Der Puy, John L. Welch, Gregory J. Shafer, Mark W. Spatz, Ryan Hulse
  • Publication number: 20170349724
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Application
    Filed: August 18, 2017
    Publication date: December 7, 2017
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Publication number: 20170306070
    Abstract: A process for the preparation of a fluoroolefin polymer from an azeotropic mixture of monomers having a constant composition, the process including the step of: contacting in a reaction zone: (i) an initiator; and (ii) an azeotropic mixture of monomers including at least one fluoroolefin and, optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: George J. Samuels, Gregory J. Shafer, Hang T. Pham
  • Publication number: 20170210865
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Application
    Filed: April 4, 2017
    Publication date: July 27, 2017
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Patent number: 9650479
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 16, 2017
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates GmbH
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Patent number: 9644054
    Abstract: A dense article that includes a dense TFE copolymer film is provided. The dense TFE copolymer film includes a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. To form the dense article, a core shell TFE copolymer is formed into a pellet, ram extruded into a tape, dried into a dried preform, and then stretched into a dense TFE copolymer film that exhibits improved physical and mechanical properties. The dense TFE copolymer film is produced directly from the dried preform at a deformation temperature less than about 335° C. and without increasing the porosity of the dried preform, as would conventionally be done in expansion processes. The dense TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. The dense articles have a void volume less than about 20%.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 9, 2017
    Assignees: W. L. Gore & Associates, Inc., W. L. Gore & Associates GmbH
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Patent number: 9441088
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: September 13, 2016
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Publication number: 20160177001
    Abstract: A dense article that includes a dense TFE copolymer film is provided. The dense TFE copolymer film includes a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. To form the dense article, a core shell TFE copolymer is formed into a pellet, ram extruded into a tape, dried into a dried preform, and then stretched into a dense TFE copolymer film that exhibits improved physical and mechanical properties. The dense TFE copolymer film is produced directly from the dried preform at a deformation temperature less than about 335° C. and without increasing the porosity of the dried preform, as would conventionally be done in expansion processes. The dense TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. The dense articles have a void volume less than about 20%.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Publication number: 20160075854
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Publication number: 20160032071
    Abstract: VDF-co-(TFE or TrFE) polymers having a molecular weight of at least about 1,000,000 g/mol and a melt temperature less than about 240° C. The VDF copolymer contains at least about 50 mol % VDF monomer and may include an amount of at least one other monomer. The VDF copolymer may be used to form a membrane that has a node and fibril structure. The membrane has a percent porosity of at least 25%. A VDF-co-(TFE or TrFE) polymer membrane may be formed by lubricating the VDF copolymer, subjecting the lubricated polymer to pressure at a temperature below the melting point of the VDF copolymer to form a preform material, and expanding the preform material at a temperature below the melting temperature of the VDF copolymer. Dense VDF copolymer articles, filled VDF copolymer membranes, and VDF copolymer fibers are also provided.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 4, 2016
    Inventors: Guy A. Sbriglia, Gregory J. Shafer
  • Publication number: 20150111031
    Abstract: A tetrafluoroethylene (TFE) copolymer film having a first endotherm between about 50° C. and about 300° C., a second endotherm between about 320° C. and about 350° C., and a third endotherm between about 350° C. and about 400° C. is provided. In exemplary embodiments, the third endotherm is approximately 380° C. In some embodiments, the second endotherm is between about 320° C. and about 330° C. or between about 330° C. and about 350° C. TFE copolymer films have a methane permeability less than about 20 ?g*micron/cm2/min. In addition, the dense articles have a void volume of less than about 20%. Methods for dense articles from core shell tetrafluoroethylene copolymers are also provided. The dense articles exhibit improved physical and mechanical properties such as adhesion and barrier properties.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 23, 2015
    Inventors: Lawrence A. Ford, Michael E. Kennedy, Shaofeng Ran, Todd S. Sayler, Gregory J. Shafer
  • Publication number: 20140005335
    Abstract: A process for the preparation of a fluoroolefin polymer from an azeotropic mixture of monomers having a constant composition, the process including the step of: contacting in a reaction zone: (i) an initiator; and (ii) an azeotropic mixture of monomers including at least one fluoroolefin and, optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Applicant: Honeywell International Inc.
    Inventors: George J. Samuels, Gregory J. Shafer, Hang T. Pham
  • Patent number: 8552128
    Abstract: A process for the preparation of a fluoroolefin polymer from an azeotropic mixture of monomers having a constant composition, the process including the step of: contacting in a reaction zone: (i) an initiator; and (ii) an azeotropic mixture of monomers including at least one fluoroolefin and, optionally, at least one ethylenically unsaturated comonomer capable of copolymerizing therewith; wherein the contacting is carried out at a temperature, pressure and length of time sufficient to produce the fluoroolefin polymer.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 8, 2013
    Assignee: Honeywell International Inc.
    Inventors: George J Samuels, Gregory J Shafer, Hang T Pham
  • Publication number: 20120184697
    Abstract: A polyvinylidene difluoride copolymer with a fluoroolefin selected from 2,3,3,3-tetrafluoropropene, 1,1,3,3,3-pentafluoropropene, 2-chloro-pentafluoropropene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, 3,3,3-trifluoro-2-trifluoromethylpropene and a mixture thereof, wherein the stoichiometry of the co-monomers defines the barrier properties of the copolymer. Such polymers include moisture barrier copolymers and oxygen barrier copolymer. Processes for preparing such moisture barrier copolymers and oxygen barrier copolymers are also provided.
    Type: Application
    Filed: March 20, 2012
    Publication date: July 19, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: GEORGE J. SAMUELS, GREGORY J. SHAFER, TAO LI, CLINTON A. THRELFALL, NANCY IWAMOTO, ERIC J. RAINAL
  • Patent number: 8163858
    Abstract: A polyvinylidene difluoride copolymer with a fluoroolefin selected from 2,3,3,3-tetrafluoropropene, 1,1,3,3,3-pentafluoropropene, 2-chloro-pentafluoropropene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, 3,3,3-trifluoro-2-trifluoromethylpropene and a mixture thereof, wherein the stoichiometry of the co-monomers defines the barrier properties of the copolymer. Such polymers include moisture barrier copolymers and oxygen barrier copolymer. Processes for preparing such moisture barrier copolymers and oxygen barrier copolymers are also provided.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 24, 2012
    Assignee: Honeywell International Inc.
    Inventors: George J Samuels, Gregory J Shafer, Tao Li, Clinton A Threlfall, Nancy Iwamoto, Eric J Rainal