Patents by Inventor Gregory Keith Dudoff

Gregory Keith Dudoff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230058578
    Abstract: The present techniques relate to various aspects of forming and filling high-aspect ratio trench structures (e.g., trench structures having an aspect ratio of 20 or greater, including aspect ratios in the range of 20:1 up to and including 50:1 or greater) combined with trench opening widths ranging from 0.5 micron to 50 microns. In one implementation a method to fabricate high-aspect ratio trenches in silicon is provided using a patterned photoresist on evaporated aluminum. In accordance with this approach, a high-aspect ratio trench can be formed having vertical side walls and defect-free trench bottoms. In some instances it may be desirable to fill such high-aspect ratio trench structures with a metal or other substrate to provide certain functionality associated with the fill material. Further processes and structures are related in which such trench structures are filled using a mixture of high-Z nano-particles within an epoxy resin matrix.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 23, 2023
    Inventors: Shubhodeep Goswami, David Milford Shaddock, Matthew David Butts, Gregory Keith Dudoff
  • Patent number: 10903330
    Abstract: The subject matter disclosed herein relates to metal-oxide-semiconductor (MOS) devices, such as silicon carbide (SiC) power devices (e.g., MOSFETs, IGBTs, etc.) In an embodiment, a semiconductor device includes a gate oxide layer disposed on top of a semiconductor layer. The semiconductor device also includes a gate electrode having a tapered sidewall. Further, the gate electrode includes a polysilicon layer disposed on top of the gate oxide layer and a metal silicide layer disposed on top of the polysilicon layer.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 26, 2021
    Assignee: General Electric Company
    Inventors: Richard Joseph Saia, Stephen Daley Arthur, Zachary Matthew Stum, Roger Raymond Kovalec, Gregory Keith Dudoff
  • Patent number: 10354871
    Abstract: A method for sputtering an aluminum layer on a surface of a semiconductor device is presented. The method includes three sputtering steps for depositing the aluminum layer, where each sputtering step includes at least one sputtering parameter that is different from a corresponding sputtering parameter of another sputtering step. The surface of the semiconductor device includes a dielectric layer having a plurality of openings formed through the dielectric layer.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: July 16, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stacey Joy Kennerly, Victor Torres, David Lilienfeld, Robert Dwayne Gossman, Gregory Keith Dudoff
  • Publication number: 20190080906
    Abstract: A method for sputtering an aluminum layer on a surface of a semiconductor device is presented. The method includes three sputtering steps for depositing the aluminum layer, where each sputtering step includes at least one sputtering parameter that is different from a corresponding sputtering parameter of another sputtering step. The surface of the semiconductor device includes a dielectric layer having a plurality of openings formed through the dielectric layer.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Stacey Joy Kennerly, Victor Torres, David Lilienfeld, Robert Dwayne Gossman, Gregory Keith Dudoff
  • Publication number: 20150144960
    Abstract: The subject matter disclosed herein relates to metal-oxide-semiconductor (MOS) devices, such as silicon carbide (SiC) power devices (e.g., MOSFETs, IGBTs, etc.) In an embodiment, a semiconductor device includes a gate oxide layer disposed on top of a semiconductor layer. The semiconductor device also includes a gate electrode having a tapered sidewall. Further, the gate electrode includes a polysilicon layer disposed on top of the gate oxide layer and a metal silicide layer disposed on top of the polysilicon layer.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: General Electric Company
    Inventors: Richard Joseph Saia, Stephen Daley Arthur, Zachary Matthew Stum, Roger Raymond Kovalec, Gregory Keith Dudoff
  • Patent number: 8377812
    Abstract: The present invention provides a method of fabricating a metal oxide semiconductor field effect transistor. The method includes the steps of forming a source region on a silicon carbide layer and annealing the source region. A gate oxide layer is formed on the source region and the silicon carbide layer. The method further includes providing a gate electrode on the gate oxide layer and disposing a dielectric layer on the gate electrode and the gate oxide layer. The method further includes etching a portion of the dielectric layer and a portion of the gate oxide layer to form sidewalls on the gate electrode. A metal layer is disposed on the gate electrode, the sidewalls and the source region. The method further includes forming a gate contact and a source contact by subjecting the metal layer to a temperature of at least about 800° C. The gate contact and the source contact comprise a metal silicide. The distance between the gate contact and the source contact is less than about 0.6 ?m.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Kevin Sean Matocha, Gregory Keith Dudoff, William Gregg Hawkins, Zachary Matthew Stum, Stephen Daley Arthur, Dale Marius Brown
  • Publication number: 20090242901
    Abstract: The present invention provides a method of fabricating a metal oxide semiconductor field effect transistor. The method includes the steps of forming a source region on a silicon carbide layer and annealing the source region. A gate oxide layer is formed on the source region and the silicon carbide layer. The method further includes providing a gate electrode on the gate oxide layer and disposing a dielectric layer on the gate electrode and the gate oxide layer. The method further includes etching a portion of the dielectric layer and a portion of the gate oxide layer to form sidewalls on the gate electrode. A metal layer is disposed on the gate electrode, the sidewalls and the source region. The method further includes forming a gate contact and a source contact by subjecting the metal layer to a temperature of at least about 800° C. The gate contact and the source contact comprise a metal silicide. The distance between the gate contact and the source contact is less than about 0.6 ?m.
    Type: Application
    Filed: June 12, 2009
    Publication date: October 1, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kevin Sean Matocha, Gregory Keith Dudoff, William Gregg Hawkins, Zachary Matthew Stum, Stephen Daley Arthur, Dale Marius Brown