Patents by Inventor Gregory L. Whiting

Gregory L. Whiting has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150228508
    Abstract: An IC assembly includes multiple microelectronic dies embedded in a substrate material using capillary forces such that the contact surface of each microelectronic die is coplanar with a planar upper surface of the substrate material. The substrate material is deposited as a layer of uncured polymer in a paste (or other solid form) on a base chip, and then the microelectronic dies are mounted on the layer surface in a predefined pattern. The uncured polymer is then heated until becomes a flowable liquid, causing the microelectronic dies to be pulled into the liquid polymer by capillary forces until the contact surface of each microelectronic die is coplanar with the upper liquid polymer surface. The liquid polymer is then cured to form the substrate material as a cross-linked robust solid film that fixedly secures the microelectronic dies in the predefined pattern. The microelectronic dies are then interconnected using standard metallization techniques.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 13, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Gregory L. Whiting, Rene A. Lujan
  • Publication number: 20150102852
    Abstract: A stressed substrate for transient electronic systems (i.e., electronic systems that visually disappear when triggered to do so) that includes one or more stress-engineered layers that store potential energy in the form of a significant internal stress. An associated trigger mechanism is also provided that, when triggered, causes an initial fracture in the stressed substrate, whereby the fracture energy nearly instantaneously travels throughout the stressed substrate, causing the stressed substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. The internal stress is incorporated into the stressed substrate through strategies similar to glass tempering (for example through heat or chemical treatment), or by depositing thin-film layers with large amounts of stress. Patterned fracture features are optionally provided to control the final fractured particle size. Electronic systems built on the substrate are entirely destroyed and dispersed during the transience event.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting, Sean R. Garner, JengPing Lu, Dirk DeBruyker
  • Publication number: 20150076961
    Abstract: A system and method reduce stiction while manipulating micro objects on a surface. The system and method employed a field generator configured to generate a driving force at a frequency and amplitude to at least partially overcome stiction between the micro objects and the surface. The field generator is further configured to generate a manipulation force to manipulate the micro objects on the surface in two dimensions. The manipulation force is spatially programmable.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Jason Thompson, Eugene M. Chow, JengPing Lu, Gregory L. Whiting, David K. Biegelsen, Janos Veres
  • Patent number: 8884156
    Abstract: A solar energy harvesting system including a sunlight concentrating member (e.g., a lens array) for focusing direct sunlight at predetermined focal points inside a waveguide containing a stimuli-responsive material (SRM) that is evenly distributed throughout the waveguide material such that the SRM assumes a relatively high transparency state away from the focused sunlight, and small light-scattering portions of the SRM change to a relatively opaque (light scattering) state only in focal zone regions adjacent to the concentrated sunlight. The outer waveguide surfaces are locally parallel (e.g., planar) and formed such that sunlight scattered by the light-scattering SRM portions is transmitted by total internal reflection through the remaining transparent waveguide material, and outcoupled to one or more solar energy receivers (e.g., PV cells) that are disposed outside the waveguide (e.g., along the peripheral edge).
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: November 11, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Gregory L. Whiting, Joerg Martini, David K. Fork, Patrick Y. Maeda
  • Patent number: 8872224
    Abstract: A low-cost neutron detector is formed on a substrate includes a sensor formed by an active material layer sandwiched between two electrodes, and a neutron capture layer formed in close proximity to (i.e., over and/or under) the sensor. The sensor active material layer includes a bulk heterojunction or bilayer structure that is formed by depositing particulate solutions incorporating at least one type of high atomic number nanoparticle using low-temperature (i.e., below 400° C.) solution processing techniques. The sensor electrode material and neutron capture material are similarly disposed in associated solutions (e.g., conductive inks) that are also deposited using low-temperature solution processing techniques, whereby the fabrication process can be carried out on low-cost flexible substrate material (e.g., PET) using high efficiency roll-to-roll production techniques.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 28, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Gregory L. Whiting, Tse Nga Ng, Janos Veres, Robert A. Street
  • Publication number: 20140264436
    Abstract: A low-cost neutron detector is formed on a substrate includes a sensor formed by an active material layer sandwiched between two electrodes, and a neutron capture layer formed in close proximity to (i.e., over and/or under) the sensor. The sensor active material layer includes a bulk heterojunction or bilayer structure that is formed by depositing particulate solutions incorporating at least one type of high atomic number nanoparticle using low-temperature (i.e., below 400° C.) solution processing techniques. The sensor electrode material and neutron capture material are similarly disposed in associated solutions (e.g., conductive inks) that are also deposited using low-temperature solution processing techniques, whereby the fabrication process can be carried out on low-cost flexible substrate material (e.g., PET) using high efficiency roll-to-roll production techniques.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Gregory L. Whiting, Tse Nga Ng, Janos Veres, Robert A. Street
  • Publication number: 20140106512
    Abstract: A method of forming a charge pattern on a microchip includes depositing a material on the surface of the microchip, and using an external device to develop charge in the material.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eugene M. Chow, JengPing Lu, Armin R. Volkel, Bing R. Hsieh, Gregory L. Whiting
  • Publication number: 20140106541
    Abstract: A method of forming a charge pattern on a microchip includes depositing a material on the surface of the microchip, and immersing the microchip in a fluid to develop charge in or on the material through interaction with the surrounding fluid.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eugene M. Chow, JengPing Lu, Armin R. Volkel, Bing R. Hsieh, Gregory L. Whiting
  • Patent number: 8685769
    Abstract: A method of forming a charge pattern on a microchip includes depositing a material on the surface of the microchip, and using an external device to develop charge in the material.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: April 1, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Eugene M. Chow, JengPing Lu, Armin R. Volkel, Bing R. Hsieh, Gregory L. Whiting
  • Patent number: 8481360
    Abstract: This invention generally relates to organic electronic devices and to methods for their fabrication. More particularly we will describe organic thin film transistor (TFT) structures and their fabrication. An organic electronic device, the device comprising: a substrate supporting a first electrode; a spacer structure over said substrate; a second electrode over said spacer structure and at a height above said first electrode; and a layer of organic semiconducting material over said first and second electrodes to provide a conducting channel between said first and second electrodes; and wherein a majority of said first electrode is laterally positioned to one side of said channel and a majority of said second electrode is laterally positioned to the other side of said channel.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 9, 2013
    Assignee: Cambridge Display Technology Limited
    Inventors: Euan C. Smith, Gregory L. Whiting
  • Publication number: 20130115846
    Abstract: A first side has a first surface on which is located a material, at least a portion of which is to be formed into at least one tip. A second side has a second surface which is heated. At least one of the first and second surfaces being moved so material located on the first surface comes into physical contact with the second surface. Then at least one of the first side and the second side are moved, wherein the physical contact between the material and the second surface is maintained, causing the material to stretch between the second surface and the first surface, generating at least one capillary bridge. Movement is continued until the physical contact between the material and the second surface is broken resulting in the formation of at least one sharp conductive tip.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 9, 2013
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Sanjiv Sambandan, John E. Northrup, Gregory L. Whiting, Robert A. Street
  • Patent number: 8430705
    Abstract: A first side has a first surface on which is located a material, at least a portion of which is to be formed into at least one tip. A second side has a second surface which is heated. At least one of the first and second surfaces being moved so material located on the first surface comes into physical contact with the second surface. Then at least one of the first side and the second side are moved, wherein the physical contact between the material and the second surface is maintained, causing the material to stretch between the second surface and the first surface, generating at least one capillary bridge. Movement is continued until the physical contact between the material and the second surface is broken resulting in the formation of at least one sharp conductive tip.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: April 30, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, John E. Northrup, Gregory L. Whiting, Robert A. Street
  • Publication number: 20120132255
    Abstract: A solar energy harvesting system including a sunlight concentrating member (e.g., a lens array) for focusing direct sunlight at predetermined focal points inside a waveguide containing a stimuli-responsive material (SRM) that is evenly distributed throughout the waveguide material such that the SRM assumes a relatively high transparency state away from the focused sunlight, and small light-scattering portions of the SRM change to a relatively opaque (light scattering) state only in focal zone regions adjacent to the concentrated sunlight. The outer waveguide surfaces are locally parallel (e.g., planar) and formed such that sunlight scattered by the light-scattering SRM portions is transmitted by total internal reflection through the remaining transparent waveguide material, and outcoupled to one or more solar energy receivers (e.g., PV cells) that are disposed outside the waveguide (e.g., along the peripheral edge).
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Gregory L. Whiting, Joerg Martini, David K. Fork, Patrick Y. Maeda
  • Patent number: 8040609
    Abstract: A self-adjusting solar light transmission (daylighting) apparatus includes a sunlight concentrating member (e.g., a lens array) for concentrating direct sunlight in focal zone regions disposed inside a sheet containing an evenly-distributed stimuli-responsive material (SRM) that has a relatively high transparency state in the absence of concentrated sunlight, and changes to a relatively opaque (light scattering or absorbing) state in small portions located in the focal zone regions in response to concentrated direct sunlight. Thereby, 80% or more of direct sunlight is prevented from passing through the apparatus, but 80% or more of diffuse light is passed. The outer sheet surfaces are locally parallel (e.g., planar) such that sunlight scattered by the light-scattering SRM portions is transmitted by total internal reflection through the remaining transparent sheet material, and outcoupled to one or more optional solar energy absorbing structures (e.g.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: October 18, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Philipp H. Schmaelzle, Gregory L. Whiting, Joerg Martini, David K. Fork, Patrick Y. Maeda
  • Publication number: 20100019231
    Abstract: This invention generally relates to organic electronic devices and to methods for their fabrication. More particularly we will describe organic thin film transistor (TFT) structures and their fabrication. An organic electronic device, the device comprising: a substrate supporting a first electrode; a spacer structure over said substrate; a second electrode over said spacer structure and at a height above said first electrode; and a layer of organic semiconducting material over said first and second electrodes to provide a conducting channel between said first and second electrodes; and wherein a majority of said first electrode is laterally positioned to one side of said channel and a majority of said second electrode is laterally positioned to the other side of said channel.
    Type: Application
    Filed: August 30, 2007
    Publication date: January 28, 2010
    Applicant: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED
    Inventors: Euan C. Smith, Gregory L. Whiting