Patents by Inventor Guangli Luo

Guangli Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070205444
    Abstract: The present invention discloses an architecture of a NMOS transistor with a compressive strained Si—Ge channel fabricated on a silicon (110) substrate, which comprises: a p-silicon (110) substrate, two n+ ion-implanted regions functioning as the source and the drain respectively, a compressive strained Si—Ge channel layer, and a gate structure. The compressive strained Si—Ge channel layer is grown on the p-silicon (110) substrate to reduce the electron conductivity effective mass in the [1_l -10] crystallographic direction and to promote the electron mobility in the [1-10] crystallographic direction. Thus, the present invention can improve the electron mobility of a NMOS transistor via the channels fabricated on the silicon (110) substrate. Further, the NMOS transistor of the present invention can combine with a high-speed PMOS transistor on a silicon (110) substrate to form a high-performance CMOS transistor on the same silicon (110) substrate.
    Type: Application
    Filed: May 11, 2006
    Publication date: September 6, 2007
    Inventors: Guangli Luo, Chao-Hsin Chien, Tsung-Hsi Yang, Chun-Yen Chang
  • Patent number: 7259084
    Abstract: This invention provides a process for growing Ge epitaxial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and subsequently growing a GaAs layer on Ge film of the surface of said Ge epitaxial layers by using metal organic chemical vapor deposition (MOCVD). The process comprises steps of, firstly, pre-cleaning a silicon wafer in a standard cleaning procedure, dipping it with HF solution and prebaking to remove its native oxide layer. Then, growing a high Ge-composition epitaxial layer, such as Si0.1Ge0.9 in a thickness of 0.8 ?m on said Si substrate by using ultra-high vacuum chemical vapor deposition under certain conditions. Thus, many dislocations are generated and located near the interface and in the low of part of Si01.Ge0.9 due to the large mismatch between this layer and Si substrate. Furthermore, a subsequent 0.8 ?m Si0.05Ge0.95 layer, and/or optionally a further 0.8 ?m Si0.02Ge0.98 layer, are grown.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: August 21, 2007
    Assignee: National Chiao-Tung University
    Inventors: Edward Y. Chang, Guangli Luo, Tsung Hsi Yang, Chung Yen Chang
  • Publication number: 20070134901
    Abstract: This invention provides a process for growing Ge epitaixial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and subsequently growing a GaAs layer on Ge film of the surface of said Ge epitaixial layers by using metal organic chemical vapor deposition (MOCVD). The process comprises steps of, firstly, pre-cleaning a silicon wafer in a standard cleaning procedure, dipping it with HF solution and prebaking to remove its native oxide layer. Then, growing a high Ge-composition epitaixial layer, such as Si0.1Ge0.9 in a thickness of 0.8 ?m on said Si substrate by using ultra-high vacuum chemical vapor deposition under certain conditions. Thus, many dislocations are generated and located near the interface and in the low of part of Si0.1Ge0.9 due to the large mismatch between this layer and Si substrate. Furthermore, a subsequent 0.8 ?m Si0.05Ge0.95 layer, and/or optionally a further 0.8 ?m Si0.02Ge0.98 layer, are grown.
    Type: Application
    Filed: January 12, 2007
    Publication date: June 14, 2007
    Applicant: National Chiao-Tung University
    Inventors: Edward Chang, Guangli Luo, Tsung-Hsi Yang, Chun-Yen Chang
  • Patent number: 7071087
    Abstract: A technique to grow high quality and large area ZnSe layer on Si substrate is provided, comprising growing GexSi1?x/Ge epitaxial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and finally growing a ZnSe film on top Ge buffer layers. Two concepts are applied in the process of this invention, the first one is to block the dislocations generated from GexSi1?x epitaxial layers and to terminate the propagated upward dislocations by using strained interfaces, accordingly the dislocation density of ZnSe layer is greatly reduced and the surface roughness is improved; the second concept is to solve the problems of anti-phase domain due to growth of polar materials on non-polar material using off-cut angle Si substrate, and that is free from diffusion problems between different atoms while generally growing ZnSe layers on Si substrate.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: July 4, 2006
    Assignee: Witty Mate Corporation
    Inventors: Tsung-Hsi Yang, Chung-Liang Lee, Chu-Shou Yang, Guangli Luo, Wu-Ching Chou, Chun-Yen Chang, Tsung-Yeh Yang
  • Publication number: 20050233495
    Abstract: A technique to grow high quality and large area ZnSe layer on Si substrate is provided, comprising growing GexSi1-x/Ge epitaxial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and finally growing a ZnSe film on top Ge buffer layers. Two concepts are applied in the process of this invention, the first one is to block the dislocations generated from GexSi1-x epitaxial layers and to terminate the propagated upward dislocations by using strained interfaces, accordingly the dislocation density of ZnSe layer is greatly reduced and the surface roughness is improved; the second concept is to solve the problems of anti-phase domain due to growth of polar materials on non-polar material using off-cut angle Si substrate, and that is free from diffusion problems between different atoms while generally growing ZnSe layers on Si substrate.
    Type: Application
    Filed: June 3, 2004
    Publication date: October 20, 2005
    Inventors: Tsung-Hsi Yang, Chung-Liang Lee, Chu-Shou Yang, Guangli Luo, Wu-Ching Chou, Chun-Yen Chang, Tsung-Yeh Yang
  • Publication number: 20050023552
    Abstract: This invention provides a process for growing Ge epitaixial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and subsequently growing a GaAs layer on Ge film of the surface of said Ge epitaixial layers by using metal organic chemical vapor deposition (MOCVD). The process comprises steps of, firstly, pre-cleaning a silicon wafer in a standard cleaning procedure, dipping it with HF solution and prebaking to remove its native oxide layer. Then, growing a high Ge-composition epitaixial layer, such as Si0.1Ge0.9 in a thickness of 0.8 ?m on said Si substrate by using ultra-high vacuum chemical vapor deposition under certain conditions. Thus, many dislocations are generated and located near the interface and in the low of part of Si0.1Ge0.9 due to the large mismatch between this layer and Si substrate. Furthermore, a subsequent 0.8 ?m Si0.05Ge0.95 layer, and/or optionally a further 0.8 ?m Si0.02Ge0.98 layer, are grown.
    Type: Application
    Filed: November 4, 2003
    Publication date: February 3, 2005
    Inventors: Edward Chang, Guangli Luo, Tsung Yang, Chung Chang