Patents by Inventor Gudrun Lange
Gudrun Lange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220315836Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.Type: ApplicationFiled: June 10, 2022Publication date: October 6, 2022Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
-
Patent number: 11453822Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.Type: GrantFiled: July 13, 2020Date of Patent: September 27, 2022Assignee: OSRAM OLED GMBHInventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
-
Patent number: 11371056Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: March 1, 2018Date of Patent: June 28, 2022Assignee: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
-
Patent number: 11180770Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: March 1, 2018Date of Patent: November 23, 2021Assignee: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
-
Patent number: 10793872Abstract: Compositions and methods for conferring herbicide tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include polynucleotides encoding herbicide tolerance polypeptides, vectors comprising those polynucleotides, and host cells comprising the vectors. The nucleotide sequences of the invention can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. Compositions also include transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: September 13, 2013Date of Patent: October 6, 2020Assignee: BASF Agricultural Solutions Seed US LLCInventors: Fabien Poree, Volker Heinrichs, Gudrun Lange, Bernd Laber, Cheryl Peters, Laura Schouten
-
Publication number: 20200239905Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: March 1, 2018Publication date: July 30, 2020Applicant: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
-
Patent number: 10597674Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: September 8, 2016Date of Patent: March 24, 2020Assignee: BASF Agricultural Solutions Seed, US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Jan Tebbe, Wayne Coco, Michael Strerath, Ernst Weber, Nikolaus Pawlowski, Sandra Geske, Heike Balven-Ross, Nina Wobst, Christina Thies, Manuel Dubald
-
Publication number: 20200063155Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: March 1, 2018Publication date: February 27, 2020Applicant: BASF Agricultural Solutions Seed US LLCInventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
-
Publication number: 20200002715Abstract: In the present invention, HPPD enzymes and plants containing them showing a full tolerance against several classes of HPPD-inhibitors are described. A set of HPPD enzymes have been designed which have either no or only a significantly reduced affinity to HPPD inhibitors and, at the same time, the rate of dissociation of the HPPD inhibitors of the enzyme is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: August 12, 2019Publication date: January 2, 2020Inventors: Fabien POREE, Bernd LABER, Gudrun LANGE, Manuel DUBALD, Roxanne ARMSTRONG
-
Patent number: 10400249Abstract: In the present invention, HPPD enzymes and plants containing them showing a full tolerance against several classes of HPPD-inhibitors are described. A set of HPPD enzymes have been designed which have either no or only a significantly reduced affinity to HPPD inhibitors and, at the same time, the rate of dissociation of the HPPD inhibitors of the enzyme is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: GrantFiled: March 9, 2015Date of Patent: September 3, 2019Assignee: BASF AGRICULTURAL SOLUTIONS SEED, US LLCInventors: Fabien Poree, Bernd Laber, Gudrun Lange, Manuel Dubald, Roxanne Armstrong
-
Publication number: 20180208937Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: September 8, 2016Publication date: July 26, 2018Inventors: Marc Linka, Fabien POREE, Bernd LABER, Gudrun LANGE, Jan TEBBE, Wayne COCO, Michael STRERATH, Ernst WEBER, Nikolaus PAWLOWSKI, Sandra GESKE, Heike BALVEN-ROSS, Nina WOBST, Christina THIES, Manuel DUBALD
-
Publication number: 20170016018Abstract: In the present invention, HPPD enzymes and plants containing them showing a full tolerance against several classes of HPPD-inhibitors are described. A set of HPPD enzymes have been designed which have either no or only a significantly reduced affinity to HPPD inhibitors and, at the same time, the rate of dissociation of the HPPD inhibitors of the enzyme is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: March 9, 2015Publication date: January 19, 2017Applicant: BAYER CROPSCIENCE AKTIENGESELLSCHAFTInventors: Fabien POREE, Bernd LABER, Gudrun LANGE, Manuel DUBALD, Roxanne ARMSTRONG
-
Publication number: 20150267180Abstract: Compositions and methods for conferring herbicide tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include polynucleotides encoding herbicide tolerance polypeptides, vectors comprising those polynucleotides, and host cells comprising the vectors. The nucleotide sequences of the invention can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. Compositions also include transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.Type: ApplicationFiled: September 13, 2013Publication date: September 24, 2015Inventors: Fabien Poree, Volker Heinrichs, Gudrun Lange, Bernd Laber, Cheryl Peters, Laura Schouten
-
Publication number: 20150167016Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from Euryarchaeota belonging to the family Picrophilaceae, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.Type: ApplicationFiled: October 6, 2014Publication date: June 18, 2015Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
-
Publication number: 20150159168Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from protists belonging to the family Blepharismidae, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.Type: ApplicationFiled: October 6, 2014Publication date: June 11, 2015Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
-
Publication number: 20150159167Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the subfamily Synechococcoideae, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.Type: ApplicationFiled: September 29, 2014Publication date: June 11, 2015Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
-
Publication number: 20150159169Abstract: present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the genus Kordia, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.Type: ApplicationFiled: October 10, 2014Publication date: June 11, 2015Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
-
Publication number: 20150159145Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the genus Rhodococcus as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.Type: ApplicationFiled: September 29, 2014Publication date: June 11, 2015Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
-
Patent number: 8859466Abstract: The present invention relates to novel oxaspirocyclic spirophenyl-substituted tetramic acid and tetronic acid derivatives of the formula (I) in which W, X, Y, Z, A, B, D, Q1, Q2, and G have the meanings given above, to a plurality of processes for their preparation and to their use as pesticides and/or herbicides. The invention also provides selective herbicidal compositions comprising, firstly, oxaspirocyclic spirophenyl-substituted tetramic acid and tetronic acid derivatives and, secondly, a crop plant compatibility-improving compound. The invention furthermore relates to increasing the activity of crop protection compositions comprising compounds of the formula (I) by addition of ammonium salts or phosphonium salts and, if appropriate, penetrants.Type: GrantFiled: July 22, 2008Date of Patent: October 14, 2014Assignee: Bayer CropScience AGInventors: Thomas Bretschneider, Reiner Fischer, Gudrun Lange, Stefan Lehr, Christian Arnold, Dieter Feucht, Eva-Maria Franken, Martin Jeffrey Hills, Heinz Kehne, Olga Malsam, Christopher Hugh Rosinger, Jan Dittgen, Ulrich Görgens, Isolde Häuser-Hahn
-
Patent number: 8859856Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the genus Kordia, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.Type: GrantFiled: December 23, 2010Date of Patent: October 14, 2014Assignee: Bayer CropScience AGInventors: Fabien Poree, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain