Patents by Inventor Guenther Proll

Guenther Proll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10076755
    Abstract: The invention relates to a recognizable carrier for determining physical, chemical or biochemical interactions by means of optical measurement methods. The carrier comprises a surface that defines a substrate surface and that has a base layer coated with reactive elements, which are bonded to receptor molecules, wherein the base layer and/or the reactive elements are provided with a pattern of holes which forms a code and/or the reactive elements are provided with linker molecules or markers which form a code. The substrate surface may additionally have a macroscopically planar pattern which is applied using laser light or chemical etching and forms a code. The invention likewise relates to a method for producing a recognizable carrier for spectroscopic processes and/or intensiometric tests to determine said interactions. The code to recognize the carrier can be controlled via a read-out unit coupled to the photometric analysis unit.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: September 18, 2018
    Assignee: Biametrics GmbH
    Inventors: Johannes Landgraf, Günther Proll, Florian Pröll
  • Patent number: 9733063
    Abstract: In a method for determining optical properties by measuring intensities at a thin layer, light is directed into the thin layer and passes through a beam splitter, which directs a first part of the light onto the thin layer and a second part of the light onto a reference detector. Interference of the first part of the light in the thin layer is detected via a high-resolution detector and forwarded to an evaluating unit, which determines the reflection and/or transmission coefficients, which are correlated with the optical layer thickness through a comparison using at least one database stored in the evaluating unit. The optical layer thickness is obtained as a gray value modification by way of a gray scale value analysis and a conversion factor stored in the at least one data base. A corresponding device and intended uses of the method and device are also described.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: August 15, 2017
    Assignee: Biametrics GmbH
    Inventors: Günther Proll, Florian Pröll
  • Patent number: 9658168
    Abstract: The invention relates to a method for determining optical properties by measuring intensities on a thin layer, wherein light is irradiated onto a carrier (105) that has said thin layer and that is at least partially transparent. Interferences on the at least one thin layer are measured as the relative intensity of at least one superpositioned wave, optionally using filter arrangements (113, 115, 117) provided for this purpose, whereupon the reflection coefficient(s) and/or the transmission coefficient(s) from the reflection and/or the transmission on the thin layer are determined. Preferably, the intensity of at least two superpositioned waves is measured. The light may be irradiated directly onto the carrier. The invention also relates to a device for determining optical properties by measuring intensities on a thin layer, said device comprising an analysis unit which stores at least one lookup table. The method and the device are preferably used in the area of homeland security.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: May 23, 2017
    Assignee: Biametrics GmbH
    Inventors: Johannes Landgraf, Günther Proll, Florian Pröll
  • Publication number: 20130314712
    Abstract: In a method for determining optical properties by measuring intensities at a thin layer, light is directed into the thin layer and passes through a beam splitter, which directs a first part of the light onto the thin layer and a second part of the light onto a reference detector. Interference of the first part of the light in the thin layer is detected via a high-resolution detector and forwarded to an evaluating unit, which determines the reflection and/or transmission coefficients, which are correlated with the optical layer thickness through a comparison using at least one database stored in the evaluating unit. The optical layer thickness is obtained as a gray value modification by way of a gray scale value analysis and a conversion factor stored in the at least one data base. A corresponding device and intended uses of the method and device are also described.
    Type: Application
    Filed: January 31, 2011
    Publication date: November 28, 2013
    Applicant: BIAMETRICS GMBH
    Inventors: Günther Proll, Florian Pröll
  • Patent number: 8174708
    Abstract: The invention relates to a carrier for a thin layer and a method for the analysis of molecular interactions on and/or in such a thin layer. A thin layer disposed on a carrier is illuminated with electromagnetic radiation from at least one radiation source and a reflected radiation part on boundary surfaces of the thin layer is detected by means of an optoelectronic converter that converts the detected radiation into a frequency- and intensity-dependant photocurrent. A reading voltage is applied to the optoelectronic converter. By changing the reading voltage, the spectral sensitivity of the optoelectronic converter is varied such that a substantially constant photocurrent is obtained. Alternatively or in addition to varying the spectral sensitivity by changing the reading voltage, the reflected radiation part is detected with an optoelectronic converter that is designed as a sensor layer in the carrier.
    Type: Grant
    Filed: August 9, 2008
    Date of Patent: May 8, 2012
    Assignee: Biametrics Maken und Rechte GmbH
    Inventors: Guenter Gauglitz, Guenther Proll, Florian Proell, Lutz Steinle, Markus Schubert
  • Publication number: 20120058569
    Abstract: The invention relates to a method for determining optical properties by measuring intensities on a thin layer, wherein light is irradiated onto a carrier (105) that has said thin layer and that is at least partially transparent. Interferences on the at least one thin layer are measured as the relative intensity of at least one superpositioned wave, optionally using filter arrangements (113, 115, 117) provided for this purpose, whereupon the reflection coefficient(s) and/or the transmission coefficient(s) from the reflection and/or the transmission on the thin layer are determined. Preferably, the intensity of at least two superpositioned waves is measured. The light may be irradiated directly onto the carrier. The invention also relates to a device for determining optical properties by measuring intensities on a thin layer, said device comprising an analysis unit which stores at least one lookup table. The method and the device are preferably used in the area of homeland security.
    Type: Application
    Filed: May 5, 2010
    Publication date: March 8, 2012
    Applicant: BIAMETRICS MARKEN UND RECHTE GMBH
    Inventors: Johannes Landgraf, Günther Proll, Florian Pröll
  • Publication number: 20120052597
    Abstract: The invention relates to a recognizable carrier for determining physical, chemical or biochemical interactions by means of optical measurement methods. The carrier comprises a surface that defines a substrate surface and that has a base layer coated with reactive elements, which are bonded to receptor molecules, wherein the base layer and/or the reactive elements are provided with a pattern of holes which forms a code and/or the reactive elements are provided with linker molecules or markers which form a code. The substrate surface may additionally have a macroscopically planar pattern which is applied using laser light or chemical etching and forms a code. The invention likewise relates to a method for producing a recognizable carrier for spectroscopic processes and/or intensiometric tests to determine said interactions. The code to recognize the carrier can be controlled via a read-out unit coupled to the photometric analysis unit.
    Type: Application
    Filed: May 4, 2010
    Publication date: March 1, 2012
    Inventors: Johannes Landgraf, Günther Proll, Florian Pröll
  • Publication number: 20110026034
    Abstract: The invention relates to a carrier for a thin layer and a method for the analysis of molecular interactions on and/or in such a thin layer. A thin layer disposed on a carrier is illuminated with electromagnetic radiation from at least one radiation source and a reflected radiation part on boundary surfaces of the thin layer is detected by means of an optoelectronic converter that converts the detected radiation into a frequency- and intensity-dependant photocurrent. A reading voltage is applied to the optoelectronic converter. By changing the reading voltage, the spectral sensitivity of the optoelectronic converter is varied such that a substantially constant photocurrent is obtained. Alternatively or in addition to varying the spectral sensitivity by changing the reading voltage, the reflected radiation part is detected with an optoelectronic converter that is designed as a sensor layer in the carrier.
    Type: Application
    Filed: August 9, 2008
    Publication date: February 3, 2011
    Inventors: Guenter Gauglitz, Guenther Proll, Florian Proell, Lutz Steinle, Markus Schubert
  • Publication number: 20100297671
    Abstract: The invention relates to a method and a device for the highly sensitive parallel detection and quantitative determination of analytes in liquid samples. According to said method, total internal reflection fluorescence (TIRF) is used in combination with a binding inhibition test on a specially coated support. The inventive method makes it possible to quickly analyze different types of liquids, such as drinking water, fruit juices, milk, serum, blood plasma, urine, etc., while allowing samples to be analyzed simultaneously regarding several different analytes, including hormones, antibiotics, pesticides, pharmaceuticals, drugs, and other molecules or molecular complexes, for example.
    Type: Application
    Filed: May 26, 2006
    Publication date: November 25, 2010
    Inventors: Jens Tschmelak, Günther Proll, Nina Käppel, Günther Gauglitz