Patents by Inventor Guido Funk

Guido Funk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9090761
    Abstract: A polyethylene for IM having excellent processing properties in terms of spiral flow testing is devised.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 28, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Gerd Mannebach, Harald Schmitz, Shahram Mihan, Rainer Karer, Manfred Hecker, Guido Funk, Adrian Popa
  • Patent number: 8431658
    Abstract: A process for introducing a catalyst powder based on a titanium compound supported on magnesium halide into a gas-phase olefin polymerization reactor, characterized in that it comprises: (a) storing the catalyst powder under an atmosphere of a liquid C3-C12 alkane; (b) withdrawing from step (a) a measured amount of said catalyst powder by means of a rotary valve; (c) transferring said metered amount of catalyst powder to a catalyst activation section by a continuous pick-up flow of a liquid C3-C12 alkane; (d) contacting the catalyst powder with a liquid phase comprising an organo-aluminum compound and optionally an external donor compound, at a temperature ranging from ?20° C. to 60° C.; (e) introducing the activated catalyst powder in one or more gas-phase olefin polymerization reactors, where a gaseous mixture comprising at least one alpha-olefin is subjected to polymerization.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 30, 2013
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Pietro Baita, Rainer Karer, Gerhardus Meier, Guido Funk, Gabriele Mei
  • Publication number: 20110282013
    Abstract: A process for introducing a catalyst powder based on a titanium compound supported on magnesium halide into a gas-phase olefin polymerization reactor, characterized in that it comprises: (a) storing the catalyst powder under an atmosphere of a liquid C3-C12 alkane; (b) withdrawing from step (a) a measured amount of said catalyst powder by means of a rotary valve; (c) transferring said metered amount of catalyst powder to a catalyst activation section by a continuous pick-up flow of a liquid C3-C12 alkane; (d) contacting the catalyst powder with a liquid phase comprising an organo-aluminum compound and optionally an external donor compound, at a temperature ranging from ?20° C. to 60° C.; (e) introducing the activated catalyst powder in one or more gas-phase olefin polymerization reactors, where a gaseous mixture comprising at least one alpha-olefin is subjected to polymerization.
    Type: Application
    Filed: December 23, 2009
    Publication date: November 17, 2011
    Applicant: BASELL POLIOLEFINE ITALIA S.R.L.
    Inventors: Pietro Baita, Rainer Karer, Gerhardus Meier, Guido Funk, Gabriele Mei
  • Publication number: 20110217499
    Abstract: A polyethylene for IM having excellent processing properties in terms of spiral flow testing is devised.
    Type: Application
    Filed: August 27, 2009
    Publication date: September 8, 2011
    Applicant: Basell Polyolefine GmbH
    Inventors: Gerd Mannebach, Harald Schmitz, Shahram Mihan, Rainer Karer, Manfred Hecker, Guido Funk, Adrian Popa
  • Patent number: 7803736
    Abstract: A process for preparing supported, titanized chromium catalysts is disclosed. The process comprises A) bringing a support material into contact with a protic medium comprising a titanium compound and a chromium compound; B) optionally removing the solvent; C) optionally calcining the precatalyst obtained after step B); and D) optionally activating the precatalyst obtained after step B) or C) in an oxygen-containing atmosphere at from 400° C. to 1100° C.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: September 28, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Wolfgang Rohde, Guido Funk, Andreas Haufe, Anke Bold, Neil Nadalin
  • Patent number: 7714091
    Abstract: Catalyst for the polymerization and/or copolymerization of olefins which is obtainable by application to a finely divided inorganic support and concluding calcination at temperatures of from 350 to 1050° C. and has a chromium content of from 0.1 to 5% by weight and a zirconium content of from 0.5 to 10% by weight, in each case based on the element in the finished catalyst, with the molar ratio of zirconium to chromium being from 0.6 to 5.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: May 11, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Andreas Haufe, Peter Kölle, Joachim Wulff-Döring, Ingo Treffkorn, Guido Funk
  • Patent number: 7705097
    Abstract: Process for preparing a supported catalyst for the polymerization and/or copolymerization of olefins which has a chromium content of from 0.01 to 5% by weight, based on the element, which comprises (a) preparing a homogeneous solution comprising an organic or inorganic chromium compound and at least one further organic or inorganic compound of elements selected from among Mg, Ca, Sr, B, Al, Si, P, Bi, Sc, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W in a protic or aprotic polar solvent, (b) bringing the solution from a) into contact with a finely divided inorganic support to form a catalyst precursor, (c) if appropriate, removing the solvent from the catalyst precursor and (d) calcining the catalyst precursor at temperatures of from 350 to 950° C., preferably 400 to 900° C., under oxidative conditions.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: April 27, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Andreas Haufe, Peter Kölle, Joachim Wulff-Döring, Ingo Treffkorn, Guido Funk
  • Publication number: 20090286671
    Abstract: The invention relates to a process for preparing an essentially spherical support for olefin polymerization catalysts, which comprises the steps: preparation of a hydrogel comprising a cogel of silicon oxide and at least one further metal oxide, if appropriate, washing of the hydrogel until the content of alkali metal ions is less than 0.1% by weight, based on the weight of solids, extraction of the water from the hydrogel until the water content is less than 5% by weight, based on the total content of liquid, and drying of the hydrogel to form a xerogel. According to the invention, the extraction step comprises at least one batchwise extraction with an organic solvent which is at least partially miscible with water down to a water content of less than 50% by weight, followed by at least one continuous extraction with an organic solvent which is at least partially miscible with water.
    Type: Application
    Filed: December 4, 2006
    Publication date: November 19, 2009
    Applicant: Basell Polyolefine GmbH
    Inventors: Christoph Kiener, Ingo Treffkorn, Guido Funk
  • Patent number: 7598201
    Abstract: The invention relates to a process for preparing an essentially spherical support for olefin polymerization catalysts, which comprises the steps: preparation of a hydrogel comprising a cogel of silicon oxide and at least one further metal oxide, if appropriate, washing of the hydrogel until the content of alkali metal ions is less than 0.1% by weight, based on the weight of solids, extraction of the water from the hydrogel until the water content is less than 5% by weight, based on the total content of liquid, and drying of the hydrogel to form a xerogel. According to the invention, the extraction step comprises at least one first extraction with a first organic solvent which is at least partially miscible with water down to a water content of 50% by weight, followed by at least one second extraction with a second organic solvent which is at least partially miscible with water.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: October 6, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Christoph Kiener, Ingo Treffkorn, Guido Funk
  • Publication number: 20090048099
    Abstract: The invention relates to a process for preparing an essentially spherical support for olefin polymerization catalysts, which comprises the steps: preparation of a hydrogel comprising a cogel of silicon oxide and at least one further metal oxide, if appropriate, washing of the hydrogel until the content of alkali metal ions is less than 0.1% by weight, based on the weight of solids, extraction of the water from the hydrogel until the water content is less than 5% by weight, based on the total content of liquid, and drying of the hydrogel to form a xerogel. According to the invention, the extraction step comprises at least one first extraction with a first organic solvent which is at least partially miscible with water down to a water content of 50% by weight, followed by at least one second extraction with a second organic solvent which is at least partially miscible with water.
    Type: Application
    Filed: December 4, 2006
    Publication date: February 19, 2009
    Applicant: BASELL POLYOLEFINE GMBH
    Inventors: Christoph Kiener, Ingo Treffkorn, Guido Funk
  • Publication number: 20080269437
    Abstract: Catalyst for the polymerization and/or copolymerization of olefins which is obtainable by application to a finely divided inorganic support and concluding calcination at temperatures of from 350 to 1050° C. and has a chromium content of from 0.1 to 5% by weight and a zirconium content of from 0.5 to 10% by weight, in each case based on the element in the finished catalyst, with the molar ratio of zirconium to chromium being from 0.6 to 5.
    Type: Application
    Filed: June 9, 2005
    Publication date: October 30, 2008
    Applicant: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Andreas Haufe, Peter Kolle, Joachim Wulff-Doring, Ingo Treffkorn, Guido Funk
  • Publication number: 20080051532
    Abstract: Process for preparing a supported catalyst for the polymerization and/or copolymerization of olefins which has a chromium content of from 0.01 to 5% by weight, based on the element, which comprises (a) preparing a homogeneous solution comprising an organic or inorganic chromium compound and at least one further organic or inorganic compound of elements selected from among Mg, Ca, Sr, B, Al, Si, P, Bi, Sc, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W in a protic or aprotic polar solvent, (b) bringing the solution from a) into contact with a finely divided inorganic support to form a catalyst precursor, (c) if appropriate, removing the solvent from the catalyst precursor and (d) calcining the catalyst precursor at temperatures of from 350 to 950° C., preferably 400 to 900° C., under oxidative conditions.
    Type: Application
    Filed: June 9, 2005
    Publication date: February 28, 2008
    Applicant: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Andreas Haupe, Peter Kolle, Joachim Wulff-Doring, Ingo Treffkorn, Guido Funk
  • Publication number: 20060063666
    Abstract: Process for preparing supported, titanized chromium catalysts, which comprises the following steps: A) bringing a support material into contact with a protic medium comprising a titanium compound and a chromium compound, B) optionally removing the solvent, C) optionally calcining the precatalyst obtained after step B) and D) optionally activating the precatalyst obtained after step B) or C) in an oxygen-containing atmosphere at from 400° C. to 1100° C.
    Type: Application
    Filed: December 9, 2003
    Publication date: March 23, 2006
    Inventors: Wolfgang Rohde, Guido Funk, Andreas Haufe, Anke Bold, Neil Nadalin
  • Publication number: 20050075241
    Abstract: A method for production of catalytic systems of the Ziegler-Natta type is characterised in comprising the following steps: A) bringing an inorganic metal oxide and a magnesium compound of formula MgRnX2-n into contact, where X=independently, fluorine, chlorine, bromine, iodine, hydrogen, NR2, OR, SR, SO3R or OC(O)R and R=independently, C1-C20 linear, branched, or cyclic alkyl, a C2-C10 alkenyl, an alkylaryl with 1-10 C atoms in the alkyl group and 6-20 C atoms in the aryl group, or a C6-C18 aryl and n=1 or 2, then, B) bringing the intermediate product obtained in step A) into contact with a halogenating reagent, C) bringing the intermediate product obtained in step B) into contact with a) a tetravalent titanium compound, b) a metallo-organic compound of group 3 of the periodic system and c) optionally, an electron-donor compound and D) washing the product obtained in step C) with an aprotic solvent.
    Type: Application
    Filed: October 18, 2001
    Publication date: April 7, 2005
    Inventors: Klaus Fottinger, Guido Funk, Peter Kolle, Joachim Wulff-Doring
  • Patent number: 6699947
    Abstract: In a process for producing Phillips catalysts in which an oxidic support material is treated in suspension with a chromium salt solution and subsequently, after removing the solvent, calcined in an oxygen-containing atmosphere at above 300° C., the oxidic support material and/or the catalyst after calcination are/is, according to the present invention, comminuted until a mean particle size of <100 &mgr;m has been reached and the proportion of particles having a size of <50 &mgr;m is at least 30%, preferably in the range from 40 to 80%. A process for preparing homopolymers or copolymers of ethene in a loop reactor at from 30 to 150° C. under a pressure in the range from 0.2 to 15 MPa in the presence of a catalyst produced by the process of the present invention is also provided.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 2, 2004
    Assignee: Basell Polyolefine GmbH
    Inventors: Kaspar Evertz, Guido Funk, Paulus de Lange, Peter Kölle, Andreas Deckers
  • Patent number: 6645900
    Abstract: The invention relates to a catalyst support and to a method for the production of the catalyst support comprising the following steps: a) production of a silicic acid hydrogel having a solids content of from 10 to 25% by weight (calculated as SiO2) whose particles are substantially spherical, b) extraction of the hydrogel particles with an alcohol until at least 60% of the water present in the hydrogel has been removed, c) drying of the resultant hydrogel until the residual alcohol content is less than 10% by weight (xerogel formation) at temperatures of ≧160° C. at atmospheric pressure using an inert entraining gas, d) setting of the desired particle size of the resultant xerogel, in which the hydrogel particles have a particle size of ≧8 mm before the extraction, and to a catalyst and to a method for the production of the catalyst by loading the catalyst support with a chromium compound. The invention also relates to a method for the production of polyolefins using the catalyst.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: November 11, 2003
    Assignee: Basell Polyolefine GmbH
    Inventors: Paulus de Lange, Guido Funk, Andreas Deckers, Peter Kölle
  • Patent number: 6608151
    Abstract: The invention relates to a method for producing supported chromium catalysts for the polymerisation of olefins by loading a xerogel support with chromium by adding to the xerogel support a volume of a 0.025 to 15% by weight solution of a chromium compound or a volume of a solution comprising from 0.025 to 7.8% by weight of Cr which is essentially converted into a chromium(VI) compound on heating in a water-free stream of gas under oxidizing conditions at temperatures in the range from 300 to 1100° C. for a period of from 10 to 1000 minutes in a solvent which comprises a maximum of 20% by weight of water, and subsequently evaporating the solvent, where the volume of the chromium salt solution employed is smaller than the pore volume of the xerogel support.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: August 19, 2003
    Assignee: Basell Polyolefine GmbH
    Inventors: Paulus de Lange, Guido Funk, Andreas Deckers, Peter Kölle
  • Patent number: 6599969
    Abstract: A process for preparing stabilized olefin polymers which have a low cold heptane extractables content by polymerization of olefins with Ziegler or Phillips catalysts, wherein the polymer is, immediately after leaving the polymerization reactor, brought into contact with an involatile phenol derivative.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: July 29, 2003
    Assignee: Basell Polyolefine GmbH
    Inventors: Wolfgang Rohde, Guido Funk, Hans-Helmut Görtz, Rolf Osterloh
  • Patent number: 6462135
    Abstract: In a low-odor polyethylene blend made from a high-molecular-weight ethylene copolymer obtainable by polymerization in the presence of a Ziegler catalyst and from a low-molecular-weight ethylene homopolymer or ethylene copolymer obtainable by polymerization in the presence of a chromocene catalyst on an oxidic support, the Al content of the high-molecular-weight component is from 5 to 60 mg/kg, the Al content of the low-molecular-weight component is from 0 to 5 mg/kg and the Al content of the blend is from 1 to 55 mg/kg. Processes are described for preparing blends of this type. Their use is described for producing moldings, in particular hollow articles and pipes. Moldings, in particular hollow articles and pipes, are produced from low-odor polyethylene blends.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: October 8, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Wolfgang Rohde, Peter Bauer, Dieter Lilge, Martin Lux, Paulus de Lange, Guido Funk
  • Publication number: 20020132941
    Abstract: The invention relates to a catalyst support and to a method for the production of the catalyst support comprising the following steps:
    Type: Application
    Filed: February 28, 2002
    Publication date: September 19, 2002
    Inventors: Paulus de Lange, Guido Funk, Andreas Deckers, Peter Kolle