Patents by Inventor Gyles Panther

Gyles Panther has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10376250
    Abstract: A medical navigation system is provided for performing at least part of an assessment of a non-living body. The medical navigation system comprises a positioning device having a positioning arm with an end effector at the end of the positioning arm, an imaging device coupled to the end effector, and a controller electrically coupled to the positioning device and the imaging device. The controller has a processor coupled to a memory and a display. The controller is configured to generate a signal to move the positioning arm to position the imaging device through a range of motion to perform a scan of a surface of the body and receive and save as data in the memory signals generated by the imaging device during the range of motion.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: August 13, 2019
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Kai Michael Hynna, Joshua Lee Richmond, Alexander Gyles Panther, Thanh Vinh Vuong
  • Publication number: 20190187230
    Abstract: A system and method of acquiring an image at a magnetic resonance imaging (MRI) system is provided. Accordingly, an analog signal based on a pulse sequence and a first gain is obtained. The analog signal is converted into a digitized signal. A potential quantization error is detected in the digitized signal based on a boundary. When the detection is affirmative, a replacement analog signal based on the pulse sequence is received. At least one portion of the replacement analog signal can be based on an adjusted gain. The adjusted gain is a factor of the first gain. The replacement analog signal is digitized into a replacement digitized signal. At least one portion of the replacement digitized signal corresponding to the at least one portion of the replacement analog signal is adjusted based on a reversal of the factor.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 20, 2019
    Inventors: Cameron Anthony PIRON, Alexander Gyles PANTHER, Chad Tyler HARRIS, Stephen B.E. MCFADYEN
  • Publication number: 20190107589
    Abstract: Some implementations provide a method for safe operation of a magnetic resonance imaging (MRI) system, the method including: determining, at least in part by using a sensor device, location information that indicates a location of an MR-incompatible object relative to the MRI system, the MRI system generating a polarizing magnetic field for imaging a subject; based on the determined location information, determining, by a control unit associated with the MRI system, that the MR-incompatible object poses an operational hazard to the MRI system; and in response to determining that the MR-incompatible object poses an operational hazard to the MRI system, reducing, by the control unit, a strength of the polarizing magnetic field.
    Type: Application
    Filed: August 20, 2018
    Publication date: April 11, 2019
    Inventors: Cameron Anthony Piron, Chad Tyler Harris, Jeff Alan Stainsby, Alexander Gyles Panther, Gai Sela
  • Patent number: 10241170
    Abstract: A system and method of acquiring an image at a magnetic resonance imaging (MRI) system is provided. Accordingly, an analog signal based on a pulse sequence and a first gain is obtained. The analog signal is converted into a digitized signal. A potential quantization error is detected in the digitized signal based on a boundary. When the detection is affirmative, a replacement analog signal based on the pulse sequence is received. At least one portion of the replacement analog signal can be based on an adjusted gain. The adjusted gain is a factor of the first gain. The replacement analog signal is digitized into a replacement digitized signal. At least one portion of the replacement digitized signal corresponding to the at least one portion of the replacement analog signal is adjusted based on a reversal of the factor.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: March 26, 2019
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) Inc.
    Inventors: Cameron Anthony Piron, Alexander Gyles Panther, Chad Tyler Harris, Stephen B. E. McFadyen
  • Publication number: 20190049538
    Abstract: A delta-relaxation magnetic resonance imaging (DREMR) system is provided. The system includes a main field magnet and field shifting coils. A main magnetic field with a strength B0 can be generated using the main filed magnet and the strength B0 of the main magnetic field can be varied through the use of the field-shifting coils. The DREMR system can be used to perform signal acquisition based on a pulse sequence for acquiring at least one of T2*-weighted signals imaging; MR spectroscopy signals; saturation imaging signals and MR signals for fingerprinting. The MR signal acquisition can be augmented by varying the strength B0 of the main magnetic field for at least a portion of the pulse sequence used to acquire the MR signal.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Inventors: Alexander Gyles PANTHER, Cameron Anthony PIRON, Jeff Alan STAINSBY, Chad Tyler HARRIS
  • Publication number: 20190033403
    Abstract: Described here are systems and methods for mitigating or otherwise removing the effects of short-term magnetic field instabilities caused by oscillations of the cold head in a cryogen-free magnet system used for magnetic resonance systems, such as magnetic resonance imaging (“MRI”) systems, nuclear magnetic resonance (“NMR”) systems, or the like.
    Type: Application
    Filed: March 9, 2016
    Publication date: January 31, 2019
    Inventors: Chad Tyler Harris, Geron Andre Bindseil, Alexander Gyles Panther, Jeff Alan Stainsby, Philip J. Beatty
  • Publication number: 20190025391
    Abstract: Systems and methods for magnetic field-dependent relaxometry using magnetic resonance imaging (“MRI”] are provided. Relaxation parameters, including longitudinal relaxation time (“T1”) and transverse relaxation time (“T2”), are estimated from magnetic resonance signal data acquired at multiple different magnetic field strengths using the same MRI system. By measuring these relaxation parameters as a function of magnetic field strength, T1 dispersion data, T2 dispersion data, or both, are generated. Based on this dispersion data, quantitative physiological parameters can be estimated. As one example, iron content can be estimated from T2 dispersion data.
    Type: Application
    Filed: January 22, 2016
    Publication date: January 24, 2019
    Applicant: Synaptive Medical (Barbados) Inc.
    Inventors: Chad Tyler HARRIS, David Mark DESCHENES, Alexander Gyles PANTHER, Jeff Alan STAINSBY, Philip J. BEATTY
  • Patent number: 10180472
    Abstract: A method of configuring a conducting grid of elements interconnected at intersecting nodes by switches is described.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: January 15, 2019
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) Inc.
    Inventors: Chad Tyler Harris, Alexander Gyles Panther, Stephen B. E. McFadyen
  • Patent number: 10166078
    Abstract: A medical navigation system is provided for registering a patient for a medical procedure with the medical navigation system using fiducial markers. The fiducial markers are placed on the patient prior to a 3D scan and the fiducial markers each have a target for use with a tracking system. The medical navigation system comprises a 3D scanner, a tracking system, a display, and a controller electrically coupled to the 3D scanner, the tracking system, and the display. The controller has a processor coupled to a memory.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: January 1, 2019
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Gal Sela, Dorothy Lui, Alexander Gyles Panther, Kelly Noel Dyer
  • Publication number: 20180356477
    Abstract: Optionally adjustable head coil system and methods for enhancing and/or optimizing magnetic resonance imaging, involving a housing, the housing having at least one portion, the at least one portion having a lower portion, an upper portion, and opposing side portions, each at least one portion optionally in movable relation to any other portion for facilitating adjustability, each at least one portion configured to accommodate at least one radio-frequency coil, and the upper and lower portions each optionally configured to overlap and engage the opposing side portions for facilitating decoupling the at least one radio-frequency coil, and a tongue portion optionally in movable relation to any other portion for facilitating adjustability, engageable with the lower portion, and fixably couple-able with a transporter.
    Type: Application
    Filed: January 27, 2016
    Publication date: December 13, 2018
    Inventors: William Wai-Leung LAU, Alexander Gyles PANTHER, Gilbert THEVATHASAN, Mark Tullio MORREALE
  • Patent number: 10139460
    Abstract: A delta-relaxation magnetic resonance imaging (DREMR) system is provided. The system includes a main field magnet and field shifting coils. A main magnetic field with a strength B0 can be generated using the main filed magnet and the strength B0 of the main magnetic field can be varied through the use of the field-shifting coils. The DREMR system can be used to perform signal acquisition based on a pulse sequence for acquiring at least one of T2*-weighted signals imaging; MR spectroscopy signals; saturation imaging signals and MR signals for fingerprinting. The MR signal acquisition can be augmented by varying the strength B0 of the main magnetic field for at least a portion of the pulse sequence used to acquire the MR signal.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 27, 2018
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) Inc.
    Inventors: Alexander Gyles Panther, Cameron Anthony Piron, Jeff Alan Stainsby, Chad Tyler Harris
  • Publication number: 20180335489
    Abstract: Methods for correcting a non-uniform power response of a radiofrequency (“RF”) transmit coil used in magnetic resonance imaging (“MRI”) are described. Transmit power response data for an RF transmit coil are processed to compute RF amplitude scaling factors for the RF transmit coil as a function of transmit frequency offset. The RF amplitude scaling factors can be used to correct transmitted RF power, and thus flip angle, to be more uniform over a range of transmit frequency offsets, as may be encountered when imaging with lower field MRI systems or MRI systems with high strength or asymmetric gradients.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 22, 2018
    Inventors: Jeff Alan Stainsby, Chad Tyler Harris, Andrew Thomas Curtis, Alexander Gyles Panther
  • Patent number: 10102681
    Abstract: A method of generating adjusted image data to compensate for modality-induced distortion includes, at a processor: receiving a three-dimensional image captured with a first imaging modality and including (i) distorted surface image data depicting a surface of an object and (ii) distorted volume image data depicting a volume of the object; extracting the distorted surface image data from the three-dimensional image; receiving reference surface image data captured with a second imaging modality and depicting the surface of the object; determining a surface transformation for registering the distorted surface image data with the reference surface image data; determining a volume transformation informed by the surface transformation; generating an adjusted three-dimensional image by applying the volume transformation to the three-dimensional image; and storing the adjusted three-dimensional image in the memory.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: October 16, 2018
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Gal Sela, Sean Jy-shyang Chen, Simon Kenley Alexander, Alexander Gyles Panther
  • Publication number: 20180279904
    Abstract: A method of imaging an implant device in a computing device is provided. The computing device includes a processor interconnected with a memory and a display. The method includes, at the processor: obtaining a first magnetic resonance (MR) image of a patient tissue, the first MR image containing a first magnetic field strength indicator; responsive to the implant device being inserted in the patient tissue, obtaining a second MR image of the patient tissue, the second MR image containing a second magnetic field strength indicator smaller than the first magnetic field strength indicator; registering the second MR image with the first MR image; generating a composite image from the first MR image and the second MR image; and presenting the composite image on the display.
    Type: Application
    Filed: October 6, 2015
    Publication date: October 4, 2018
    Inventors: Jeff STAINSBY, Alexander Gyles PANTHER, Chad Tyler HARRIS, Cameron Anthony PIRON
  • Patent number: 10082547
    Abstract: Some implementations provide a method for safe operation of a magnetic resonance imaging (MRI) system, the method including: determining, at least in part by using a sensor device, location information that indicates a location of an MR-incompatible object relative to the MRI system, the MRI system generating a polarizing magnetic field for imaging a subject; based on the determined location information, determining, by a control unit associated with the MRI system, that the MR-incompatible object poses an operational hazard to the MRI system; and in response to determining that the MR-incompatible object poses an operational hazard to the MRI system, reducing, by the control unit, a strength of the polarizing magnetic field.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: September 25, 2018
    Assignee: Synaptive Medical (Barbados) Inc.
    Inventors: Cameron Anthony Piron, Chad Tyler Harris, Jeff Alan Stainsby, Alexander Gyles Panther, Gal Sela
  • Publication number: 20180263707
    Abstract: A medical navigation system is provided for registering a patient for a medical procedure with the medical navigation system using fiducial markers. The fiducial markers are placed on the patient prior to a 3D scan and the fiducial markers each have a target for use with a tracking system. The medical navigation system comprises a 3D scanner, a tracking system, a display, and a controller electrically coupled to the 3D scanner, the tracking system, and the display. The controller has a processor coupled to a memory.
    Type: Application
    Filed: July 21, 2015
    Publication date: September 20, 2018
    Inventors: Gal SELA, Dorothy LUI, Alexander Gyles PANTHER, Kelly Noel DYER
  • Publication number: 20180235714
    Abstract: A method of maintaining patient registration in surgical navigation includes: obtaining a patient position in a tracking system frame of reference, based on a fiducial marker array affixed in a first position relative to the patient; receiving an initial surface scan depicting the patient and the fiducial array; responsive to receiving an intraoperative image depicting the patient: obtaining a position, in the tracking system frame of reference, of the fiducial array affixed in a second position relative to the patient; receiving a secondary surface scan depicting the patient and the fiducial array; detecting a deviation in a position of the fiducial marker array relative to the patient between the initial and secondary surface scans; and applying the deviation to the position of the patient to generate an updated position of the patient in the tracking system frame of reference, based on the fiducial array affixed in the second position.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 23, 2018
    Inventors: Yu-Ching Audrey KUO, Kirusha SRIMOHANARAJAH, Gal SELA, Alexander Gyles PANTHER, Kelly Noel DYER
  • Patent number: 10052162
    Abstract: A medical imaging system for illuminating tissue samples using three-dimensional structured illumination microscopy is port-based surgery is provided. The system comprises: an image sensor; a mirror device; zoom optics; a light modulator; a processor; and collimating optics configured to convey one or more images from the modulator to the mirror, the mirror configured to convey the images to the zoom optics, the zoom optics configured: to convey the image(s) from the mirror to a tissue sample; and convey one or more resulting images, formed by the image(s) illuminating the sample, back to the mirror, which conveys the resulting image(s) from the zoom optics to the image sensor, and, the processor configured to control the modulator to form the image(s), the image(s) including at least one pattern selected to interact with the sample to generate different depth information in each of resulting image(s).
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: August 21, 2018
    Assignee: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Yanhui Bai, Michael Frank Gunter Wood, Siu Wai Jacky Mak, Murugathas Yuwaraj, Alexander Gyles Panther, Sean Jy-Shyang Chen
  • Publication number: 20180231624
    Abstract: Some implementations provide a system that includes: a main magnet including a bore and configured to generate a substantially uniform magnetic field in the bore; one or more gradient coils configured to perturb the substantially uniform magnetic field in the bore, wherein perturbing the substantially uniform magnetic field results in a first varying magnetic field outside of the bore; and one or more shielding units located outside of the bore and configured to generate a second varying magnetic field con figured to attenuate the first varying magnetic field outside of the bore.
    Type: Application
    Filed: August 6, 2015
    Publication date: August 16, 2018
    Inventors: Alexander Gyles PANTHER, Geron André BINDSEIL, Chad Tyler HARRIS, Mark Tuilio MORREALE
  • Publication number: 20180197346
    Abstract: A method of generating adjusted image data to compensate for modality-induced distortion includes, at a processor: receiving a three-dimensional image captured with a first imaging modality and including (i) distorted surface image data depicting a surface of an object and (ii) distorted volume image data depicting a volume of the object; extracting the distorted surface image data from the three-dimensional image; receiving reference surface image data captured with a second imaging modality and depicting the surface of the object; determining a surface transformation for registering the distorted surface image data with the reference surface image data; determining a volume transformation informed by the surface transformation; generating an adjusted three-dimensional image by applying the volume transformation to the three-dimensional image; and storing the adjusted three-dimensional image in the memory.
    Type: Application
    Filed: July 29, 2015
    Publication date: July 12, 2018
    Applicant: SYNAPTIVE MEDICAL (BARBADOS) INC.
    Inventors: Gal SELA, Sean Jy-shyang CHEN, Simon Kenley ALEXANDER, Alexander Gyles PANTHER