Patents by Inventor Gyungock Kim

Gyungock Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9031365
    Abstract: An optical device module includes a substrate, an interlayer insulating layer on the substrate, an optical waveguide on the interlayer insulating layer, an optical device on the optical waveguide, and a prism disposed between the optical device and the optical waveguide. The prism has a refractive index greater than a refractive index of the optical waveguide.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: May 12, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sahnggi Park, Sang Gi Kim, Seong Wook Yoo, Gyungock Kim
  • Patent number: 9025920
    Abstract: Provided are optical coupling devices and silicon photonics chips having the same. the optical coupling device may include a lower layer having a first region and a second region, a first core layer disposed on the lower layer, the first core layer including first and second waveguides disposed on the first and second regions, respectively, a clad layer covering the first waveguide, and a second core layer interposed between the clad layer and the lower layer to cover the second waveguide. The second waveguide has a width decreasing with increasing distance from the first region and a vertical thickness greater than that of the first waveguide.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 5, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Do Won Kim, Gyungock Kim
  • Publication number: 20150078708
    Abstract: Provided are an optical coupler and an arrayed-waveguide grating structure including the same. The coupler includes a lower clad layer, a core comprising a slab waveguide region disposed on one side of the lower clad layer and a ridge waveguide region disposed on the other side of the lower clad layer, and an upper clad disposed on the core, wherein the ridge waveguide region comprises a self-focusing region configured to focus an optical signal provided form the slab waveguide region and thus to prevent scattering of the optical signal.
    Type: Application
    Filed: July 11, 2014
    Publication date: March 19, 2015
    Inventors: Jaegyu PARK, Hyundai PARK, Jiho JOO, Myung joon KWACK, Gyungock KIM
  • Patent number: 8948224
    Abstract: The inventive concept provides semiconductor laser devices and methods of fabricating the same. According to the method, a silicon-crystalline germanium layer for emitting a laser may be formed in a selected region by a selective epitaxial growth (SEG) method. Thus, surface roughness of both ends of a Fabry Perot cavity formed of the silicon-crystalline germanium layer may be reduced or minimized, and a cutting process and a polishing process may be omitted in the method of fabricating the semiconductor laser device.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: February 3, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: In Gyoo Kim, Gyungock Kim, Sang Hoon Kim, JiHo Joo, Ki Seok Jang
  • Publication number: 20150030282
    Abstract: Provided is an optical device including a first optical waveguide on one side of a substrate; a laser separated from the first optical waveguide and disposed on the other side of the substrate; and a first coupled waveguide between the laser and the first optical waveguide. The laser may be monolithically integrated on the substrate.
    Type: Application
    Filed: January 16, 2014
    Publication date: January 29, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyundai PARK, Jaegyu PARK, JiHo JOO, Gyungock KIM
  • Patent number: 8936951
    Abstract: Provided are a semiconductor laser and a method of manufacturing the same. The method includes: providing a substrate including a buried oxide layer; forming patterns, which includes an opening part to expose the substrate, by etching the buried oxide layer; forming a germanium single crystal layer in the opening part; and forming an optical coupler, which is adjacent to the germanium single crystal layer, on the substrate.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: In Gyoo Kim, Gyungock Kim, Sang Hoon Kim, Ki Seok Jang, JiHo Joo
  • Patent number: 8928107
    Abstract: Provided are light detection devices and methods of manufacturing the same. The light detection device includes a first conductive pattern on a surface of a substrate, an insulating pattern on the substrate and having an opening exposing at least a portion of the first conductive pattern, a light absorbing layer filling the opening of the insulating pattern and having a top surface disposed at a level substantially higher than a top surface of the insulating pattern, a second conductive pattern on the light absorbing layer, and connecting terminals electrically connected to the first and second conductive patterns, respectively.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: January 6, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hoon Kim, Gyungock Kim, In Gyoo Kim, JiHo Joo, Ki Seok Jang
  • Patent number: 8903208
    Abstract: Provided are a waveguide with a reduced phase error and a photonics device including the same. The waveguide structure may include a lower clad, a core pattern with at least one bending region, on the lower clad, a beam deflecting pattern on the core pattern, and an upper clad covering the core pattern provided with the beam deflecting pattern. The beam deflecting pattern may be formed of a material, whose refractive index may be higher than that of the upper clad and may be lower than or equivalent to that of the core pattern, and the beam deflecting pattern has an increasing and decreasing width or an oscillating width, when measured along the bending region.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 2, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jaegyu Park, Sahnggi Park, Gyungock Kim
  • Publication number: 20140346532
    Abstract: Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.
    Type: Application
    Filed: October 24, 2013
    Publication date: November 27, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Gyungock KIM, Hyundai PARK, In Gyoo KIM, Sang Hoon KIM, Ki Seok JANG, Sang Gi KIM, Jiho JOO, Yongseok CHOI, Hyuk Je KWON, Jaegyu PARK, Sun Ae KIM, Jin Hyuk OH, Myung Joon KWACK
  • Publication number: 20140348194
    Abstract: Provided is a vertical-cavity surface-emitting laser (VCSEL). The VCSEL includes a silicon substrate, a lower reflective layer disposed on the silicon substrate, a light generation laser disposed on the lower reflective layer, and an upper reflective layer disposed on the light generation layer. The lower reflective layer, the light generation layer, and the upper reflective layer may include a III-V semiconductor light source-active layer monolithically integrated on a first impurity layer by wafer bonding.
    Type: Application
    Filed: March 3, 2014
    Publication date: November 27, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyundai PARK, Gyungock KIM
  • Patent number: 8859319
    Abstract: Methods of forming photo detectors are provided. The method includes providing a semiconductor layer on a substrate, forming a trench in the semiconductor layer, forming a first single crystalline layer and a second single crystalline layer using a selective single crystalline growth process in the trench, and patterning the first and second single crystalline layers and the semiconductor layer to form a first single crystalline pattern, a second single crystalline pattern and an optical waveguide.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 14, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hoon Kim, Gyungock Kim, In Gyoo Kim, JiHo Joo, Ki Seok Jang
  • Patent number: 8823121
    Abstract: Provided is a waveguide photodetector that may improve an operation speed and increase or maximize productivity. The waveguide photodetector includes a waveguide layer extending in a first direction, an absorption layer disposed on the waveguide layer, a first electrode disposed on the absorption layer, a second electrode disposed on the waveguide layer, the second electrode being spaced from the first electrode and the absorption layer in a second direction crossing the first direction, and at least one bridge electrically connecting the absorption layer to the second electrode.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: September 2, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dongwoo Suh, Sanghoon Kim, Jiho Joo, Gyungock Kim
  • Publication number: 20140241662
    Abstract: An optical device module includes a substrate, an interlayer insulating layer on the substrate, an optical waveguide on the interlayer insulating layer, an optical device on the optical waveguide, and a prism disposed between the optical device and the optical waveguide. The prism has a refractive index greater than a refractive index of the optical waveguide.
    Type: Application
    Filed: July 2, 2013
    Publication date: August 28, 2014
    Inventors: Sahnggi PARK, Sang Gi KIM, Seong Wook YOO, Gyungock KIM
  • Publication number: 20140175510
    Abstract: Provided is a germanium photodetector having a germanium epitaxial layer formed without using a buffer layer and a method of fabricating the same. In the method, an amorphous germanium layer is formed on a substrate. The amorphous germanium layer is heated up to a high temperature to form a crystallized germanium layer. A germanium epitaxial layer is formed on the crystallized germanium layer.
    Type: Application
    Filed: March 1, 2014
    Publication date: June 26, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Dongwoo SUH, Sang Hoon KIM, Gyungock KIM, JiHo JOO
  • Publication number: 20140178069
    Abstract: An optical receiver module may include a demultiplexer routing a plurality of multiplexed optical signals to different optical paths depending on their wavelengths, a photodetector provided spaced apart from the demultiplexer to convert the optical signals into electric signals, respectively, a pre-amplifier electrically connected to the photodetector to amplify intensities of the electric signals, a flexible printed circuit board including a first electrode layer, which is electrically connected to the pre-amplifier to transmit the electric signals to the external circuit, and a second electrode layer configured to supply a ground potential. The flexible printed circuit board are provided not to have any via hole between the first and second electrode layers.
    Type: Application
    Filed: July 11, 2013
    Publication date: June 26, 2014
    Inventors: Taeyong KIM, JiHo JOO, Gyungock KIM
  • Patent number: 8761553
    Abstract: Provided is an optical network structure. To configure an optical network structure between hundreds or more of cores in a CPU, intersection between waveguides does not occur, and thus, the optical network structure enables two-way communication between all the cores without an optical switch disposed in an intersection point. The present invention enables a single chip optical network using a silicon photonics optical element, and a CPU chip configured with hundreds or thousands of cores can be developed.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 24, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sahnggi Park, Gyungock Kim, In Gyoo Kim, Jeong Woo Park, Sang Hoon Kim, Do Won Kim
  • Publication number: 20140169729
    Abstract: Provided are a waveguide with a reduced phase error and a photonics device including the same. The waveguide structure may include a lower clad, a core pattern with at least one bending region, on the lower clad, a beam deflecting pattern on the core pattern, and an upper clad covering the core pattern provided with the beam deflecting pattern. The beam deflecting pattern may be formed of a material, whose refractive index may be higher than that of the upper clad and may be lower than or equivalent to that of the core pattern, and the beam deflecting pattern has an increasing and decreasing width or an oscillating width, when measured along the bending region.
    Type: Application
    Filed: June 10, 2013
    Publication date: June 19, 2014
    Inventors: Jaegyu PARK, Sahnggi PARK, Gyungock KIM
  • Publication number: 20140169389
    Abstract: An optical receiver module includes a demultiplexer, an optical device including a right-angled mirror reflecting individual optical signals transmitted from the demultiplexer and a plurality of lenses receiving the reflected optical signals, and a plurality of photodetectors spaced apart from the plurality of lenses by a predetermined distance. The plurality of photodetectors converts the individual optical signals into electrical signals. The optical device and the demultiplexer are formed into a united structure. A distance between the lenses is equal to a distance between the photodetectors.
    Type: Application
    Filed: July 12, 2013
    Publication date: June 19, 2014
    Inventors: Taeyong KIM, JiHo JOO, Gyungock KIM
  • Publication number: 20140105235
    Abstract: Provided are a semiconductor laser and a method of manufacturing the same. The method includes: providing a substrate including a buried oxide layer; forming patterns, which includes an opening part to expose the substrate, by etching the buried oxide layer; forming a germanium single crystal layer in the opening part; and forming an optical coupler, which is adjacent to the germanium single crystal layer, on the substrate.
    Type: Application
    Filed: February 25, 2013
    Publication date: April 17, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: In Gyoo KIM, Gyungock KIM, Sang Hoon KIM, Ki Seok JANG, JiHo JOO
  • Patent number: 8698271
    Abstract: Provided is a germanium photodetector having a germanium epitaxial layer formed without using a buffer layer and a method of fabricating the same. In the method, an amorphous germanium layer is formed on a substrate. The amorphous germanium layer is heated up to a high temperature to form a crystallized germanium layer. A germanium epitaxial layer is formed on the crystallized germanium layer.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: April 15, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dongwoo Suh, Sang Hoon Kim, Gyungock Kim, JiHo Joo