Patents by Inventor H. Thurman Henderson

H. Thurman Henderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7723760
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 25, 2010
    Assignee: University of Cincinnati
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Patent number: 7723845
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 25, 2010
    Assignee: University of Cincinnati
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Patent number: 7705342
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 W/cm2).
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: April 27, 2010
    Assignee: University of Cincinnati
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Patent number: 7692926
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotropic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 6, 2010
    Assignee: Progressive Cooling Solutions, Inc.
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Publication number: 20080128898
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotropic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Application
    Filed: October 31, 2007
    Publication date: June 5, 2008
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Publication number: 20080115912
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Application
    Filed: October 31, 2007
    Publication date: May 22, 2008
    Inventors: H. Thurman HENDERSON, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Publication number: 20080115913
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60w/cm2).
    Type: Application
    Filed: October 31, 2007
    Publication date: May 22, 2008
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Publication number: 20080110598
    Abstract: The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotrophic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (?LHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm2).
    Type: Application
    Filed: October 31, 2007
    Publication date: May 15, 2008
    Inventors: H. Thurman Henderson, Ahmed Shuja, Srinivas Parimi, Frank M. Gerner, Praveen Medis
  • Publication number: 20030087198
    Abstract: A procedure is presented herein for formation of NEMS/MEMS components and systems with direct arbitrary three-dimensionality for the first time in NEMS/MEMS fabrication. This method leads also to a simple and effective external “quick-connection” interconnect scheme where ordinary fused silica tubes may be press-fitted into the surface opening of this system to withstand high pressure. This method may be extended for connection of multiple levels of polymer fluidic motherboards together using small sections of fused silica tubing, with no loss of stacking volume because of the lack of any connector lips or bosses. This scheme gives the flexibility of allowing multiple stacks of polymeric 3-D components (motherboards) while being able to control the channel lengths within the stacks as desired. Mixing chambers can also be molded in a single silicone elastomer (or other material) layer, because true three-dimensionality is trivially possible without the complexity of multi stacked lithography.
    Type: Application
    Filed: September 18, 2002
    Publication date: May 8, 2003
    Inventors: Saman Mangala Dharmatilleke, H. Thurman Henderson
  • Patent number: 6258263
    Abstract: A chromatograph fabricated using microelectromechanical techniques. The chromatograph includes a first layer superimposed over a second layer. At least one micro-channel is etched into the second layer to provide the separation column of the chromatograph. The surfaces of the micro-channel are chemically activated in order to separate the components of a sample flowing through the micro-channel by bonded phase chemistry. A third layer is placed in superimposed relationship with the second layer. At least one pair of electrodes is formed to the third layer with at least a portion of the electrodes internal to the micro-channel of the second layer. The electrodes detect separated components flowing through the micro-channel and identify them by their electrical conductivity. The depth of the micro-channel is greater than the width, thereby minimizing pressure drop across the device and allowing the chromatograph to operate with a high degree of speed, sensitivity and accuracy.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 10, 2001
    Assignee: The University of Cincinnati
    Inventors: H. Thurman Henderson, Neville R. deGouvea-Pinto
  • Patent number: 6032076
    Abstract: Extra- to intra-corporeal power is provided by a transformer implanted at least partially within a defunctionalized intestinal pouch (or sack), such as an ileal pouch. The transformer includes a continuous loop magnetic core which is implanted within the pouch. The pouch itself includes a passageway permitting the secondary wiring to extend around the and through the magnetic core and through its central opening without entering the pouch providing intracorporeal current. Wire providing the primary windings extend from outside the body in through a stoma into the pouch and surround portions of the magnetic core within the pouch. Because of the use of a generally continuous loop magnetic core of high permeability, there is little or virtually no magnetic flux leakage. A solid circular core of a high permeability material may be used.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: February 29, 2000
    Assignee: The University of Cincinnati
    Inventors: David Melvin, H. Thurman Henderson, Arthur J. Helmicki
  • Patent number: 5531787
    Abstract: An implantable auditory system for a human subject includes a microsensor, a processor and a microactuator. The microsensor is implanted in the middle ear to transduce sound waves into electrical signals. The processor is implanted in a hole surgically sculpted in the skull and controls amplification and processing of the electrical signals. The microactuator is micromachined from a single crystal and acts as a parallel plate capacitor, with a diaphragm spaced from the rest of the crystal by an extremely small void therebetween. The microactuator is implanted in the middle ear, and it may extend into the inner ear through a surgically formed fenestration or be mounted to the ossicular chain. Electrical signals conveyed to the microactuator set up electric fields across the narrow void and the diaphragm to produce electrostatic forces that cause the diaphragm to vibrate, thereby directly or indirectly vibrating fluid in the inner ear.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: July 2, 1996
    Inventors: S. George Lesinski, H. Thurman Henderson
  • Patent number: 5310449
    Abstract: A solid state microanemometer is micromachined from a crystal to a shape with four thick external sides that define an outer rectangle, four thin sections that define an inner rectangle and four diagonally directed branches interconnecting the corners of the outer rectangle to the inner rectangle. Four semiconductor resistors located on the four inner sections form a sensing bridge. Each external side has a pair of electrical contacts that are electrically interconnected, via conductive leads that extend along the diagonal branches and partially along the inner sections, to one of the semiconductor resistors. The physically connected semiconductor resistors and external sides form a rugged solid state device, while thermal and electrical isolation of the resistors from each other permits higher operating temperatures and improved fluid flow sensing capability.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: May 10, 1994
    Assignee: University of Cincinnati
    Inventor: H. Thurman Henderson
  • Patent number: 5231877
    Abstract: A solid state microanemometer is micromachined from a crystal to a shape with four thick external sides that define an outer rectangle, four thin sections that define an inner rectangle and four diagonally directed branches interconnecting the corners of the outer rectangle to the inner rectangle. Four semiconductor resistors located on the four inner sections form a sensing bridge. Each external side has a pair of electrical contacts that are electrically interconnected, via conductive leads that extend along the diagonal branches and partially along the inner sections, to one of the semiconductor resistors. The physically connected semiconductor resistors and external sides form a rugged solid state device, while thermal and electrical isolation of the resistors from each other permits higher operating temperatures and improved fluid flow sensing capability.
    Type: Grant
    Filed: December 12, 1990
    Date of Patent: August 3, 1993
    Assignee: University of Cincinnati
    Inventor: H. Thurman Henderson
  • Patent number: 4930347
    Abstract: A solid state microanemometer with improved sensitivity and response time is micromachined out of a single deep level doped semiconductor crystal and includes four corner supports interconnected to four spanning members which form the resistor legs of a Wheatstone bridge. The bottom of the supports are electrostatically bonded to a glass plate, thus thermally isolating the resistor legs a predetermined distance above the top surface of the plate and electrically isolating the supports. Electrically conductive material deposited on the four corner supports provides electrical contacts which enable a voltage to be applied across the resistor legs. Preferably, an n.sup.+ material is diffused into the region of the crystal located beneath the electrically conductive material, and the exposed surfaces of the crystal are sealed with a passivation layer.
    Type: Grant
    Filed: May 23, 1989
    Date of Patent: June 5, 1990
    Assignee: University of Cincinnati
    Inventor: H. Thurman Henderson