Patents by Inventor Hanafy M. Omar

Hanafy M. Omar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8346690
    Abstract: The present invention relates to the generation of an integrated guidance law for aerodynamic missiles. Particularly, a Tabu search-based approach is utilized for generating an integrated fuzzy guidance law, which includes three separate fuzzy controllers. Each of these fuzzy controllers is activated in a unique region of missile interception.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: January 1, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Hanafy M. Omar, M. A. Abido
  • Patent number: 8332085
    Abstract: The particle swarm-based micro air launch vehicle trajectory optimization method is carried out by formulating a parameter optimization problem, which is solved using a particle swarm optimization procedure. The optimization problem is formulated using a single objective function having the explicit objective to maximize the payload mass. Constraints on terminal conditions are imposed.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: December 11, 2012
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Hanafy M. Omar, Moumen M. Idres, Raed Kafafy
  • Patent number: 8195345
    Abstract: The method for generating an integrated guidance law for aerodynamic missiles uses a strength Pareto evolutionary algorithm (SPEA)-based approach for generating an integrated fuzzy guidance law, which includes three separate fuzzy controllers. Each of these fuzzy controllers is activated in a unique region of missile interception. The distribution of membership functions and the associated rules are obtained by solving a nonlinear constrained multi-objective optimization problem in which final time, energy consumption, and miss distance are treated as competing objectives. A Tabu search is utilized to build a library of initial feasible solutions for the multi-objective optimization algorithm. Additionally, a hierarchical clustering technique is utilized to provide the decision maker with a representative and manageable Pareto-optimal set without destroying the characteristics of the trade-off front. A fuzzy-based system is employed to extract the best compromise solution over the trade-off curve.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 5, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventors: Hanafy M. Omar, Mohammad A. Abido
  • Patent number: 8190307
    Abstract: The control optimization method for helicopters carrying suspended loads during hover flight utilizes a controller based on time-delayed feedback of the load swing angles. The controller outputs include additional displacements, which are added to the helicopter trajectory in the longitudinal and lateral directions. This simple implementation requires only a small modification to the software of the helicopter position controller. Moreover, the implementation of this controller does not need rates of the swing angles. The parameters of the controllers are optimized using the method of particle swarms by minimizing an index that is a function of the history of the load swing. Simulation results show the effectiveness of the controller in suppressing the swing of the slung load while stabilizing the helicopter.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 29, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventor: Hanafy M. Omar
  • Patent number: 8185259
    Abstract: The fuzzy logic-based control method for helicopters carrying suspended loads utilizes a controller based on fuzzy logic membership distributions of sets of load swing angles. The anti-swing controller is fuzzy-based and has controller outputs that include additional displacements added to the helicopter trajectory in the longitudinal and lateral directions. This simple implementation requires only a small modification to the software of the helicopter position controller. The membership functions govern control parameters that are optimized using a particle swarm algorithm. The rules of the anti-swing controller are derived to mimic the performance of a time-delayed feedback controller. A tracking controller stabilizes the helicopter and tracks the trajectory generated by the anti-swing controller.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 22, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventor: Hanafy M. Omar
  • Publication number: 20120053764
    Abstract: The particle swarm-based micro air launch vehicle trajectory optimization method is carried out by formulating a parameter optimization problem, which is solved using a particle swarm optimization procedure. The optimization problem is formulated using a single objective function having the explicit objective to maximize the payload mass. Constraints on terminal conditions are imposed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: HANAFY M. OMAR, MOUMEN M. IDRES, RAED KAFAFY
  • Publication number: 20120043414
    Abstract: The control optimization method for helicopters carrying suspended loads during hover flight utilizes a controller based on time-delayed feedback of the load swing angles. The controller outputs include additional displacements, which are added to the helicopter trajectory in the longitudinal and lateral directions. This simple implementation requires only a small modification to the software of the helicopter position controller. Moreover, the implementation of this controller does not need rates of the swing angles. The parameters of the controllers are optimized using the method of particle swarms by minimizing an index that is a function of the history of the load swing. Simulation results show the effectiveness of the controller in suppressing the swing of the slung load while stabilizing the helicopter.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventor: HANAFY M. OMAR
  • Publication number: 20120046810
    Abstract: The fuzzy logic-based control method for helicopters carrying suspended loads utilizes a controller based on fuzzy logic membership distributions of sets of load swing angles. The anti-swing controller is fuzzy-based and has controller outputs that include additional displacements added to the helicopter trajectory in the longitudinal and lateral directions. This simple implementation requires only a small modification to the software of the helicopter position controller. The membership functions govern control parameters that are optimized using a particle swarm algorithm. The rules of the anti-swing controller are derived to mimic the performance of a time-delayed feedback controller. A tracking controller stabilizes the helicopter and tracks the trajectory generated by the anti-swing controller.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventor: HANAFY M. OMAR
  • Publication number: 20120036096
    Abstract: The method for generating an integrated guidance law for aerodynamic missiles uses a strength Pareto evolutionary algorithm (SPEA)-based approach for generating an integrated fuzzy guidance law, which includes three separate fuzzy controllers. Each of these fuzzy controllers is activated in a unique region of missile interception. The distribution of membership functions and the associated rules are obtained by solving a nonlinear constrained multi-objective optimization problem in which final time, energy consumption, and miss distance are treated as competing objectives. A Tabu search is utilized to build a library of initial feasible solutions for the multi-objective optimization algorithm. Additionally, a hierarchical clustering technique is utilized to provide the decision maker with a representative and manageable Pareto-optimal set without destroying the characteristics of the trade-off front. A fuzzy-based system is employed to extract the best compromise solution over the trade-off curve.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: HANAFY M. OMAR, M. A. ABIDO
  • Publication number: 20120036095
    Abstract: The present invention relates to the generation of an integrated guidance law for aerodynamic missiles. Particularly, a Tabu search-based approach is utilized for generating an integrated fuzzy guidance law, which includes three separate fuzzy controllers. Each of these fuzzy controllers is activated in a unique region of missile interception.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: HANAFY M. OMAR, M. A. ABIDO