Patents by Inventor Hannes Pichler

Hannes Pichler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12165004
    Abstract: Systems and methods relate to selectively arranging a plurality of qubits into a spatial structure to encode a quantum computing problem. Exemplary arrangement techniques can be applied to encode various quantum computing problems. The plurality of qubits can be driven according to various driving techniques into a final state. The final state can be measured to identify an exact or approximate solution to the quantum computing problem.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 10, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Hannes Pichler, Shengtao Wang, Leo Xiangyu Zhou, Soonwon Choi, Mikhail D. Lukin
  • Publication number: 20240289665
    Abstract: A device includes a grouping of N qubits, where N is equal to two or more, and a coherent light source configured to, given selected values for a set of parameters of at least a first and a second laser pulse, the parameters selected from a relative phase shift, a laser frequency, a laser intensity, and a pulse duration: apply at least the first and second laser pulses to all qubits within the grouping of N qubits, thereby coupling a non-interacting quantum state |1 to an interacting excited state |r, such that each qubit that begins in quantum state |1 returns to the state |1 upon completion of the at least first and second laser pulses, and such that qubits in the grouping are mutually blockaded.
    Type: Application
    Filed: January 11, 2022
    Publication date: August 29, 2024
    Inventors: Hannes Pichler, Harry Jay Levine, Mikhail D. Lukin, Ahmed Omran, Alexander Keesling Contreras, Giulia Semeghini, Vladan Vuletic, Markus Greiner, Tout Wang, Sepehr Ebadi
  • Patent number: 12051520
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Grant
    Filed: June 5, 2023
    Date of Patent: July 30, 2024
    Assignees: President and Fellows of Harvard College, California Institute of Technology, Massachusetts Institute of Technology
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Publication number: 20230326623
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 12, 2023
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 11710579
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: July 25, 2023
    Assignees: President and Fellows of Harvard College, California Institute of Technology, Massachusetts Institute of Technology
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Publication number: 20220391743
    Abstract: A system includes a quantum computer, and a computing node configured to: receive a description of a probability distribution, determine a first Hamiltonian having a ground state encoding the probability distribution, determine a second Hamiltonian, the second Hamiltonian being continuously transformable into the first Hamiltonian via a path through at least one quantum phase transition, and provide instructions to the quantum computer to: initialize a quantum system according to a ground state of the second Hamiltonian, and evolve the quantum system from the ground state of the second Hamiltonian to the ground state of the first Hamiltonian according to the path through the at least one quantum phase transition. The computing node is further configured to receive from the quantum computer a measurement on the quantum system, thereby obtaining a sample from the probability distribution.
    Type: Application
    Filed: July 6, 2022
    Publication date: December 8, 2022
    Inventors: Dominik S. Wild, Dries Sels, Hannes Pichler, Mikhail D. Lukin
  • Publication number: 20220293293
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 11380455
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 5, 2022
    Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, California Institute of Technology
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Publication number: 20210279631
    Abstract: Systems and methods relate to selectively arranging a plurality of qubits into a spatial structure to encode a quantum computing problem. Exemplary arrangement techniques can be applied to encode various quantum computing problems. The plurality of qubits can be driven according to various driving techniques into a final state. The final state can be measured to identify an exact or approximate solution to the quantum computing problem.
    Type: Application
    Filed: August 30, 2019
    Publication date: September 9, 2021
    Inventors: Hannes Pichler, Shengtao Wang, Leo Xiangyu Zhou, Soonwon Choi, Mikhail D. Lukin
  • Publication number: 20200185120
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: July 13, 2018
    Publication date: June 11, 2020
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov