Patents by Inventor Hans-Georg Rammensee

Hans-Georg Rammensee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200325174
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 15, 2020
    Inventors: Juliane WALZ, Daniel Johannes KOWALEWSKI, Hans-Georg RAMMENSEE, Stefan STEVANOVIC
  • Patent number: 10799571
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: October 13, 2020
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Hans-Georg Rammensee, Stefan Stevanovic, Juliane Walz, Daniel Johannes Kowalewski, Claudia Berlin
  • Publication number: 20200316126
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Heiko SCHUSTER, Janet Peper, Philipp Wagner, Hans-Georg Rammensee
  • Publication number: 20200316127
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Heiko SCHUSTER, Janet Peper, Philipp Wagner, Hans-Georg Rammensee
  • Publication number: 20200316125
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Heiko Schuster, Janet Peper, Philipp Wagner, Hans-Georg Rammensee
  • Publication number: 20200317748
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 8, 2020
    Inventors: Heiko SCHUSTER, Janet PEPER, Kevin ROEHLE, Phillipp WAGNER, Hans-Georg RAMMENSEE
  • Publication number: 20200308225
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Publication number: 20200308227
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Publication number: 20200308226
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Patent number: 10781244
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: September 22, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Janet Peper, Kevin Roehle, Phillipp Wagner, Hans-Georg Rammensee
  • Patent number: 10781233
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: September 22, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Hans-Georg Rammensee, Juliane Walz, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Publication number: 20200268862
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Application
    Filed: April 20, 2020
    Publication date: August 27, 2020
    Inventors: Hans-Georg RAMMENSEE, Stefan STEVANOVIC, Juliane WALZ, Daniel Johannes KOWALEWSKI, Claudia BERLIN
  • Publication number: 20200254078
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: Hans-Georg RAMMENSEE, Stefan STEVANOVIC, Juliane WALZ, Daniel Johannes KOWALEWSKI, Claudia BERLIN
  • Patent number: 10738100
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: August 11, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Janet Peper, Kevin Röhle, Phillip Wagner, Hans-Georg Rammensee
  • Patent number: 10730910
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to several novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: August 4, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Juliane Walz, Daniel Johannes Kowalewski, Hans-Georg Rammensee, Stefan Stevanovic
  • Patent number: 10722538
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: July 28, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Janet Peper, Philipp Wagner, Hans-Georg Rammensee
  • Publication number: 20200223900
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: February 28, 2020
    Publication date: July 16, 2020
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20200207831
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: February 28, 2020
    Publication date: July 2, 2020
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN
  • Publication number: 20200207832
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: March 11, 2020
    Publication date: July 2, 2020
    Inventors: Heiko Schuster, Janet Peper, Kevin Roehle, Phillipp Wagner, Hans-Georg Rammensee
  • Publication number: 20200199193
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: February 18, 2020
    Publication date: June 25, 2020
    Inventors: Juliane Sarah WALZ, Daniel Johannes KOWALEWSKI, Markus LOEFFLER, Moreno DI MARCO, Nico TRAUTWEIN, Annika NELDE, Stefan STEVANOVIC, Hans-Georg RAMMENSEE, Sebastian HAEN