Patents by Inventor Harald Philipp

Harald Philipp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060284836
    Abstract: A control panel having a touch sensitive position sensor and at least one mechanical switch located within a sensitive area of the position sensor is provided. The position sensor comprises a capacitive position sensing element coupled to position sensing circuitry operable to determine the position of a capacitive load, such as a finger, positioned adjacent to the sensitive area of the position sensing element. The mechanical switch has an open state and a closed state and is arranged such that a contact of the switch is selectively electrically coupled to or decoupled from the position sensing element depending on whether the switch is in the open or closed state. A compact and robust control panel can thus be provided in which the presence of the mechanical switch within the sensitive area of the position sensor does not significantly effect its sensitivity.
    Type: Application
    Filed: June 19, 2006
    Publication date: December 21, 2006
    Inventor: Harald Philipp
  • Patent number: 7148704
    Abstract: The position of an object, which may be a user's finger, along a body is sensed capacitively. A measurement circuit meters the simultaneous injection of electrical charge into the two ends of the body, which may be shaped as a straight line or as a curve. A computing device computes the ratio of the relative changes in the amount of charge injected into each end of the element. The result of this computation is a one dimensional coordinate number plus a detection state indication, both of which can be fed to another functional element, such as an appliance controller, which interprets the coordinate and detection state as a command or measurement.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: December 12, 2006
    Inventor: Harald Philipp
  • Publication number: 20060238513
    Abstract: A touch sensitive control panel is described. The control panel comprises a sensor surface in which a plurality of sensor areas are arranged and a circuit board offset from the sensor surface. The circuit board has an electrical contact associated with each of the sensor areas. The electrical contacts are connected to capacitance measurement circuitry. The control panel further comprises a guide block having a first side facing the sensor surface, a second side facing the circuit board and a plurality of channels extending from the first side to the second side. A plurality of resilient electrical conductors pass through the channels to connect between the sensor areas and the electrical contacts on the circuit board, such that the capacitance measurement circuitry is coupled to the sensor areas.
    Type: Application
    Filed: May 21, 2004
    Publication date: October 26, 2006
    Inventor: Harald Philipp
  • Publication number: 20060207806
    Abstract: A touch sensitive position sensor for detecting the position of an object in two dimensions is described. The position sensor has first and second resistive bus-bars spaced apart with an anisotropic conductive area between them. Electric currents induced in the anisotropic conductive area by touch or proximity flow preferentially towards the bus-bars to be sensed by detection circuitry. Because induced currents, for example those induced by drive circuitry, flow preferentially along one direction, pin-cushion distortions in position estimates are largely constrained to this single direction. Such one-dimensional distortions can be corrected for very simply by applying scalar correction factors, thereby avoiding the need for complicated vector correction.
    Type: Application
    Filed: June 7, 2006
    Publication date: September 21, 2006
    Inventor: Harald Philipp
  • Publication number: 20060192690
    Abstract: Keyboards, keypads and other data entry devices can suffer from a keying ambiguity problem. In a small keyboard, for example, a user's finger is likely to overlap from a desired key to onto adjacent ones. An iterative method of removing keying ambiguity from a keyboard comprising an array of capacitive keys involves measuring a signal strength associated with each key in the array, comparing the measured signal strengths to find a maximum, determining that the key having the maximum signal strength is the unique user-selected key, and maintaining that selection until either the initially selected key's signal strength drops below some threshold level or a second key's signal strength exceeds the first key's signal strength.
    Type: Application
    Filed: April 12, 2006
    Publication date: August 31, 2006
    Inventor: Harald Philipp
  • Patent number: 7007547
    Abstract: An optical sensor or emitter (1) used for monitoring combustion processes in a combustion chamber is provided with an optical element (2) on a side facing the combustion chamber and an optical fiber or fiber bundle (3) on a side opposite the combustion chamber, the optical element and optical fiber/fiber bundle being jointly held in a metal sleeve (4). An annular gap filled with solder material (5) is provided between the optical element (2) and the inside of the metal sleeve (4).
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: March 7, 2006
    Assignee: AVL List GmbH
    Inventors: Harald Philipp, Ernst Winklhofer
  • Publication number: 20060038793
    Abstract: An apparatus for controlling functions of an appliance is described having a touch-sensitive control panel resistant to accidental activation. The touch-sensitive panel has a plurality of proximity sensor areas which may be selected by a user wishing to activate associated functions of the appliance. Driver circuitry coupled to the sensor areas is operable to output detection signals to a controller in response to a user selecting ones of the sensor areas. The controller is configured to activate functions of the appliance in response to these detection signals. For one or more functions of the appliance, for example a switching on function, the controller is configured to only activate the function when a user makes a pre-determined combination of at least two selections from the plurality of sensor areas. This reduces the chances of potentially dangerous functions being activated inadvertently and can further help a designer to provide an intuitive and uncluttered appearance to the control panel.
    Type: Application
    Filed: November 4, 2005
    Publication date: February 23, 2006
    Inventor: Harald Philipp
  • Patent number: 6993607
    Abstract: When an array of proximity sensors is used as a keyboard, it can provide an ambiguous output if a user's finger overlaps several keys or if liquid is spilled on the keyboard. This ambiguity is reduced by an iterative method that repeatedly measures a detected signal strength associated with each key, compares all the measured signal strengths to find a maximum, determines that the key having the maximum signal strength is the unique user-selected key and then suppresses or ignores signals from all other keys as long as the signal from the selected key remains above some nominal threshold value.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: January 31, 2006
    Inventor: Harald Philipp
  • Publication number: 20050246459
    Abstract: When an array of proximity sensors is used as a keyboard, it can provide an ambiguous output if a user's finger overlaps several keys or if liquid is spilled on the keyboard. This ambiguity is reduced by an iterative method that repeatedly measures a detected signal strength associated with each key, compares all the measured signal strengths to find a maximum, determines that the key having the maximum signal strength is the unique user-selected key and then suppresses or ignores signals from all other keys as long as the signal from the selected key remains above some nominal threshold value.
    Type: Application
    Filed: July 14, 2005
    Publication date: November 3, 2005
    Inventor: Harald Philipp
  • Publication number: 20050179673
    Abstract: A capacitive sensor for detecting the presence of an object adjacent a panel is described. The sensor comprises an electrically conducting sensor element coupled to a capacitance measurement circuit. In use, the capacitive sensor is mounted with the sensor element adjacent an underside of the panel. The sensor element includes a flared portion which deforms when pressed against the panel to provide an extended contact area between the sensor element and the panel. When a user touches an upper side of the panel above the extended contact area, the capacitance of the sensor element is modified. This is detected by the measurement circuit and identifies a touch.
    Type: Application
    Filed: February 11, 2005
    Publication date: August 18, 2005
    Inventor: Harald Philipp
  • Publication number: 20050078027
    Abstract: An apparatus for controlling functions of an appliance is described having a touch-sensitive control panel resistant to accidental activation. The touch-sensitive panel has a plurality of proximity sensor areas which may be selected by a user wishing to activate associated functions of the appliance. Driver circuitry coupled to the sensor areas is operable to output detection signals to a controller in response to a user selecting ones of the sensor areas. The controller is configured to activate functions of the appliance in response to these detection signals. For one or more functions of the appliance, for example a switching on function, the controller is configured to only activate the function when a user makes a pre-determined combination of at least two selections from the plurality of sensor areas. This reduces the chances of potentially dangerous functions being activated inadvertently and can further help a designer to provide an intuitive and uncluttered appearance to the control panel.
    Type: Application
    Filed: October 1, 2004
    Publication date: April 14, 2005
    Inventor: Harald Philipp
  • Publication number: 20050052429
    Abstract: A capacitive position sensor for detecting the position of an object, typically an operator's finger, relative to a resistive sensing element, wherein the sensing element comprises a sensing path that has terminals connected along it that subdivide the sensing path into multiple sections. Each terminal is coupled to its own sensing channel, each of which generates a signal that is sensitive to the capacitance between its terminal and a system ground. The signals are fed to a processor for analysis. The processor determines over which section the object is positioned by comparing the signals from the sensing channels, and determines the position of the object within that section by comparing the signals from the terminals spanning that section. In this way, the sensing path can be formed in a closed loop, such as a circle for a scroll dial, in which the operator's finger position and movement can be uniquely determined in a straightforward manner.
    Type: Application
    Filed: August 12, 2004
    Publication date: March 10, 2005
    Inventor: Harald Philipp
  • Publication number: 20050041018
    Abstract: A touch sensitive position sensor for detecting the position of an object in two dimensions is described. The position sensor has first and second resistive bus-bars spaced apart with an anisotropic conductive area between them. Electric currents induced in the anisotropic conductive area by touch or proximity flow preferentially towards the bus-bars to be sensed by detection circuitry. Because induced currents, for example those induced by drive circuitry, flow preferentially along one direction, pin-cushion distortions in position estimates are largely constrained to this single direction. Such one-dimensional distortions can be corrected for very simply by applying scalar correction factors, thereby avoiding the need for complicated vector correction.
    Type: Application
    Filed: August 12, 2004
    Publication date: February 24, 2005
    Inventor: Harald Philipp
  • Publication number: 20040104826
    Abstract: The position of an object, which may be a user's finger, along a body is sensed capacitively. A measurement circuit meters the simultaneous injection of electrical charge into the two ends of the body, which may be shaped as a straight line or as a curve. A computing device computes the ratio of the relative changes in the amount of charge injected into each end of the element. The result of this computation is a one dimensional coordinate number plus a detection state indication, both of which can be fed to another functional element, such as an appliance controller, which interprets the coordinate and detection state as a command or measurement.
    Type: Application
    Filed: October 30, 2003
    Publication date: June 3, 2004
    Inventor: Harald Philipp
  • Publication number: 20040008129
    Abstract: When an array of proximity sensors is used as a keyboard, it can provide an ambiguous output if a user's finger overlaps several keys or if liquid is spilled on the keyboard. This ambiguity is reduced by an iterative method that repeatedly measures a detected signal strength associated with each key, compares all the measured signal strengths to find a maximum, determines that the key having the maximum signal strength is the unique user-selected key and then suppresses or ignores signals from all other keys as long as the signal from the selected key remains above some nominal threshold value.
    Type: Application
    Filed: July 11, 2003
    Publication date: January 15, 2004
    Inventor: Harald Philipp
  • Patent number: 6649924
    Abstract: An optoelectronic measuring device for monitoring combustion processes in the combustion chamber of an internal combustion engine during operation includes optical sensors assigned to the combustion chamber and connected to an evaluation unit, the sensor ends on the side of the combustion chamber being essentially positioned in a plane and the sensors being aligned so that the individual viewing angles of the sensors will uniformly cover at least one predefined measuring sector of the combustion chamber. A simple way of localizing the origin of engine knocking in the combustion chamber is ensured by positioning the optical sensors in an essentially cylindrical component projecting into the combustion chamber with the sensor ends positioned essentially radially along the wall of the component.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: November 18, 2003
    Assignee: AVL List GmbH
    Inventors: Harald Philipp, Ernst Winklhofer, Martin Baumgartner
  • Publication number: 20030132922
    Abstract: Capacitive touch screens are subject to a ‘handshadow’ error associated with the undesired proximity detection of a portion of a relatively large object (such as a hand) comprising or associated with a smaller pointing portion or object (such as finger tip), where the smaller pointing portion is closer to a touch sensing surface than is the rest of the object. A history profile of data derived from the screen both just prior to, and just after the touch is detected can be processed to compensate for the handshadow effect and to determine a corrected touch position value based on regression techniques or other forms of predictive mathematics. In addition to accurately determining positions where a screen is touched, these approaches can also determine a screen location corresponding to a position of closest approach of a pointing object.
    Type: Application
    Filed: January 14, 2003
    Publication date: July 17, 2003
    Inventor: Harald Philipp
  • Patent number: 6535200
    Abstract: A multi-electrode capacitive position sensor functions as part of a computer pointing device that can be integrated with the computer's keyboard and that employs ratiometric capacitive sensing techniques. This approach allows a computer user to move a cursor about on a display by skimming his or her fingers over the keyboard without actually depressing any of the keys. The preferred sensing arrangement comprises a circuit for first charging a resistive layer disposed on an active portion of the keyboard and then discharging the layer by simultaneously connecting each of several spaced-apart electrodes to respective inputs of a multi-channel charge detection circuit. For a one-dimensional pointing device, two or more charge transferring switches and electrodes are required, with two being the preferred number. For a two-dimensional pointing device, three or more charge transferring switches and electrodes are required, with four being a preferred number.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: March 18, 2003
    Inventor: Harald Philipp
  • Patent number: 6466036
    Abstract: Pulse circuits for measuring the capacitance to ground of a plate may be used in control equipment to provide an indication of the proximity of a person or object to be sensed. Pulse circuits are disclosed that are made from sets of three or more electrical switching elements arranged so that each of the switching elements has one side electrically connected to either a supply voltage or to an electrical ground. These arrangements are compatible with existing integrated circuit fabrication technology. In addition, the circuitry can be configured as a proximity sensing switch that requires only a two wire connection to a host apparatus.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: October 15, 2002
    Inventor: Harald Philipp
  • Patent number: 6457355
    Abstract: A capacitance measurement circuit 1 has a pair of level indicating LEDs 2,3. Via one input 4, the circuit is connected to the metallic wall W of a container C of water. This connection can be direct or, as indicated by broken lines, via earth. Via a second input 5, the circuit is connected to a probe 6. This has a stem 7 with a transversely arranged disc 8 at its lower end. Spaced above the lower end, a second, larger, transverse disc 9 is secured to the stem. The stem and the discs are of conductive metal, typically copper, and electrically connected and common. The entire probe is insulated, except for its point of contact with the input 5. When the liquid is just below the level of the lower disc 8, the capacitance between it and earth, the liquid being conductive, will be determined by the area of the disc, its separation from the liquid and the dielectric constant of the intervening gap. The capacitance varies in proportion to the gap.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: October 1, 2002
    Inventor: Harald Philipp