Patents by Inventor Harro Hagedorn

Harro Hagedorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021399
    Abstract: A device for extracting ions and/or electrons from a plasma has a grid (1) and a grid holder (2), on the circumference of which the grid (1) is fastened. According to the invention, the grid (1) is configured as an expanded metal grid. The invention further also provides a plasma source, a plasma coating device, and a method for producing an interference layer or interference layer systems.
    Type: Application
    Filed: November 19, 2021
    Publication date: January 18, 2024
    Inventors: Holger REUS, Daniel REPPIN, Dirk MÜLLER, Simon LIU, Harro HAGEDORN
  • Patent number: 11814718
    Abstract: The invention relates to a method for producing substrates having a plasma coated surface made of a dielectric coating material in a vacuum chamber, having an AC-powered plasma device, comprising moving a substrate relative to the plasma device by means of a movement device along a curve, and depositing coating material on a surface of the substrate in a coating region along a trajectory lying on the surface of the substrate using the plasma device.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 14, 2023
    Assignee: Bühler Alzenau GmbH
    Inventors: Jürgen Pistner, Harro Hagedorn
  • Patent number: 10418231
    Abstract: A method for reducing the optical loss of the multilayer coating below a predetermined value in a zone by producing coating on a displaceable substrate in a vacuum chamber with the aid of a residual gas using a sputtering device. Reactive depositing a coating on the substrate by adding a reactive component with a predetermined stoichiometric deficit in a zone of the sputtering device. Displacing the substrate with the deposited coating into the vicinity of a plasma source, which is located in the vacuum chamber at a predetermined distance from the sputtering device. The plasma action of the plasma source modifying the structure and/or stoichiometry of the coating, preferably by adding a predetermined quantity of the reactive component to reduce the optical loss of the coating.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: September 17, 2019
    Assignee: Leybold Optics GmbH
    Inventors: Michael Scherer, Jurgen Pistner, Walter Lehnert, Harro Hagedorn, Gerd Deppisch, Mario Roder
  • Patent number: 10012595
    Abstract: A test glass changer for optically measuring layer properties in a vacuum coating system including a movable substrate holder for guiding a substrate through a stream of coating material; a mount connected to a rotary spindle and rotatable relative to the substrate holder about the rotary spindle; and a control device directing a test glass element into a ray path of an optical measuring device and into a stream of the coating material. The mount has at least two recesses offset eccentrically with respect to the spindle for one test glass element in each case. The control device can induce a rotational movement of the mount about the spindle. The centering device can exert a torque and holding moment on the mount to bring a test glass element arranged in one of the recesses into a measuring position of the measuring device. Related methods are also provided.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: July 3, 2018
    Assignee: LEYBOLD OPTICS GMBH
    Inventors: Alfons Zöller, Harro Hagedorn, Eckhard Wirth, Werner Weinrich, Tobias Gross
  • Publication number: 20180087142
    Abstract: The invention relates to a method for producing substrates having a plasma coated surface made of a dielectric coating material in a vacuum chamber, having an AC-powered plasma device, comprising moving a substrate relative to the plasma device by means of a movement device along a curve, and depositing coating material on a surface of the substrate in a coating region along a trajectory lying on the surface of the substrate using the plasma device.
    Type: Application
    Filed: March 31, 2016
    Publication date: March 29, 2018
    Inventors: Jürgen Pistner, Harro Hagedorn
  • Patent number: 9589768
    Abstract: The invention relates to an apparatus (1) for producing a reflection-reducing layer on a surface (21) of a plastics substrate (20). The apparatus comprises a first sputtering device (3) for applying a base layer (22) to the surface (21) of the plastics substrate (20), a plasma source (4) for plasma-etching the coated substrate surface (21), and a second sputtering device (5) for applying a protective layer (24) to the substrate surface (21). These processing devices (3, 4, 5) are arranged jointly in a vacuum chamber (2), which has inlets (8) for processing gases. In order to move the substrate (20) between the processing devices (3, 4, 5) in the interior of the vacuum chamber (2), a conveying apparatus (10) is provided which is preferably in the form of a rotary table (11). Furthermore, the invention relates to a method for producing such a reflection-reducing layer on the surface (21) of the plastics substrate (20).
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: March 7, 2017
    Assignee: Leybold Optics GmbH
    Inventors: Michael Scherer, Jurgen Pistner, Harro Hagedorn, Michael Klosch-Trageser
  • Publication number: 20160111313
    Abstract: The invention relates to an apparatus for the vacuum treatment of substrates (130), comprising a vacuum chamber (1) having a plasma device (160) of a process chamber (110) and a holding device (135) for substrates (130), which is arranged in the process chamber (110), underneath the plasma device, wherein the process chamber (110) comprises an upper subsection (105a) having a side wall (106a) and a lower subsection (105b) having a side wall (106b), and the upper subsection (105a) and the lower subsection (105b) can be moved vertically relative to each other. According to the invention between the side wall (106a) of the upper subsection (105a) and the side wall (106b) of the lower subsection (105b), a lower flow path (105c) extends between the inner region (140) of the process chamber (110) and the inner region (1a) of the vacuum chamber (1) that is arranged outside the upper subsection (105a).
    Type: Application
    Filed: March 26, 2014
    Publication date: April 21, 2016
    Applicant: Leybold Optics GMBH
    Inventors: Harro HAGEDORN, Jürgen PISTNER, Thomas VOGT, Alexander MULLER
  • Publication number: 20150162173
    Abstract: A method for reducing the optical loss of the multilayer coating below a predetermined value in a zone by producing coating on a displaceable substrate in a vacuum chamber with the aid of a residual gas using a sputtering device. Reactive depositing a coating on the substrate by adding a reactive component with a predetermined stoichiometric deficit in a zone of the sputtering device. Displacing the substrate with the deposited coating into the vicinity of a plasma source, which is located in the vacuum chamber at a predetermined distance from the sputtering device. The plasma action of the plasma source modifying the structure and/or stoichiometry of the coating, preferably by adding a predetermined quantity of the reactive component to reduce the optical loss of the coating.
    Type: Application
    Filed: February 13, 2015
    Publication date: June 11, 2015
    Inventors: Michael Scherer, Jurgen Pistner, Walter Lehnert, Harro Hagedorn, Gerd Deppisch, Mario Roder
  • Patent number: 8956511
    Abstract: A method for reducing the optical loss of the multilayer coating below a predetermined value in a zone by producing coating on a displaceable substrate in a vacuum chamber with the aid of a residual gas using a sputtering device. Reactive depositing a coating on the substrate by adding a reactive component with a predetermined stoichiometric deficit in a zone of the sputtering device. Displacing the substrate with the deposited coating into the vicinity of a plasma source, which is located in the vacuum chamber at a predetermined distance from the sputtering device. The plasma action of the plasma source modifying the structure and/or stoichiometry of the coating, preferably by adding a predetermined quantity of the reactive component to reduce the optical loss of the coating.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: February 17, 2015
    Assignee: Leybold Optics GmbH
    Inventors: Michael Scherer, Jurgen Pistner, Walter Lehnert, Harro Hagedorn, Gerd Deppisch, Mario Roder
  • Publication number: 20140375986
    Abstract: A test glass changer for optically measuring layer properties in a vacuum coating system including a movable substrate holder for guiding a substrate through a stream of coating material; a mount connected to a rotary spindle and rotatable relative to the substrate holder about the rotary spindle; and a control device directing a test glass element into a ray path of an optical measuring device and into a stream of the coating material. The mount has at least two recesses offset eccentrically with respect to the spindle for one test glass element in each case. The control device can induce a rotational movement of the mount about the spindle. The centering device can exert a torque and holding moment on the mount to bring a test glass element arranged in one of the recesses into a measuring position of the measuring device. Related methods are also provided.
    Type: Application
    Filed: June 28, 2012
    Publication date: December 25, 2014
    Inventors: Alfons Zöller, Harro Hagedorn, Eckhard Wirth, Werner Weinrich, Tobias Gross
  • Publication number: 20140329095
    Abstract: The invention relates to an apparatus (1) for producing a reflection-reducing layer on a surface (21) of a plastics substrate (20). The apparatus comprises a first sputtering device (3) for applying a base layer (22) to the surface (21) of the plastics substrate (20), a plasma source (4) for plasma-etching the coated substrate surface (21), and a second sputtering device (5) for applying a protective layer (24) to the substrate surface (21). These processing devices (3, 4, 5) are arranged jointly in a vacuum chamber (2), which has inlets (8) for processing gases. In order to move the substrate (20) between the processing devices (3, 4, 5) in the interior of the vacuum chamber (2), a conveying apparatus (10) is provided which is preferably in the form of a rotary table (11).—Furthermore, the invention relates to a method for producing such a reflection-reducing layer on the surface (21) of the plastics substrate (20).
    Type: Application
    Filed: September 28, 2012
    Publication date: November 6, 2014
    Inventors: Harro Hagedorn, Jurgen Pistner, Michael Klosch-Trageser, Michael Scherer
  • Patent number: 8184302
    Abstract: The invention concerns a measuring system for optical monitoring of coating processes in a vacuum chamber, in which the light source is arranged inside the vacuum chamber between the substrate carrier and a shutter is arranged beneath the substrate carrier and the light-receiving unit is arranged outside the vacuum chamber in the optical path of the light source. The substrate carrier is designed to accept at least one substrate, and it can move across the coasting source in the vacuum chamber, preferably revolving about an axis, whereby the substrate or substrates cross(es) the optical path between the light source and the light-receiving unit for transmission measurement, and the shutter shades a measurement area across the coating source.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: May 22, 2012
    Assignee: Leybold Optics GmbH
    Inventors: Alfons Zoller, Harro Hagedorn, Werner Klug
  • Publication number: 20080285060
    Abstract: The invention concerns a measuring system for optical monitoring of coating processes in a vacuum chamber, in which the light source is arranged inside the vacuum chamber between the substrate carrier and a shutter is arranged beneath the substrate carrier and the light-receiving unit is arranged outside the vacuum chamber in the optical path of the light source. The substrate carrier is designed to accept at least one substrate, and it can move across the coasting source in the vacuum chamber, preferably revolving about an axis, whereby the substrate or substrates cross(es) the optical path between the light source and the light-receiving unit for transmission measurement, and the shutter shades a measurement area across the coating source.
    Type: Application
    Filed: February 23, 2006
    Publication date: November 20, 2008
    Applicant: LEYBOLD OPTICS GMBH
    Inventors: Alfons Zoller, Harro Hagedorn, Werner Klug
  • Publication number: 20060151312
    Abstract: A method for producing one or more coating on a displaccable substrate in a vacuum chamber with the aid of a residual gas, by means of a sputtering device said coating being formed from at least two constituents, whereby a sputtering material of the sputtering device constitutes at least one first constituent and a reactive component of the residual gas constitutes a second constituent.
    Type: Application
    Filed: December 3, 2003
    Publication date: July 13, 2006
    Inventors: Michael Scherer, Jurgen Pistner, Walter Lehnert, Harro Hagedorn, Gerd Deppisch, Mario Roder
  • Patent number: 6549291
    Abstract: Process for continuous determination of the optical layer thickness of coatings, which are applied on both sides of the spherical surfaces of concave convex lenses having different spherical radii R1 and R2. In this process a ray of light is beamed eccentrically during the coating process at each concave convex lens, and the reflection or transmission at the convex spherical surface and at the concave spherical surface is continuously measured with photodiodes, and the respective optical layer thickness is determined from the functional relationship between the reflection or the transmission and the optical layer thickness.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: April 15, 2003
    Assignee: Balzers Leybold Optics GmbH
    Inventors: Torsten Dieter, Rudolf Beckman, Alfons Zoller, Harro Hagedorn
  • Patent number: 6241824
    Abstract: In an apparatus for the coating of substrates in a vacuum with rotatable substrate carriers (15,16,20) and with a loading and an unloading station (8 or 9), two vacuum chambers (3,4) are provided with several coating stations (6,7 or 10 to 14), directly next to one another, wherein a rotatable transport arm (15 or 16) is accommodated in each of the two chambers (3, 4), and the transport planes of the two transport arms (15,16) are aligned with one another. In the separation area of the two chambers (3,4), an air lock is provided with a corresponding transfer apparatus (5) with two transport arms (15,16), whose rotary plate (20) is provided with substrate storage unit (21,22) and projects about halfway into one chamber (3) and halfway into the other chamber (4), wherein one chamber (3) has both the loading as well as the unloading station (8 or 9).
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: June 5, 2001
    Assignee: Leybold Systems GmbH
    Inventors: Günter Bräuer, Hermann Kloberdanz, Hans-Georg Lotz, Jochen Schneider, Alfons Zöller, Harro Hagedorn, Michael König, Jürgen Meinel, Götz Teschner