Patents by Inventor Hartwig Voss

Hartwig Voss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200010618
    Abstract: Process for providing purified polyether block copolymers comprising polyoxyethylene (PEO) and polyoxypropylene (PPO) moieties wherein the purified product is obtained by an ultrafiltration step of a solution of the polyether block copolymers and wherein the block copolymers are depleted in lower molecular impurities.
    Type: Application
    Filed: January 30, 2018
    Publication date: January 9, 2020
    Inventors: Hartwig Voss, Felicitas Guth, Emiel Jan Kappert, Pedro Sa Gomes
  • Patent number: 10441925
    Abstract: Process for making a membrane M comprising the following steps: a) preparing a copolymer C, wherein said copolymer C comprises blocks of at least one polyarylene ether A and blocks of polyalkylene oxide PAO, wherein the content of polyethyleneoxide in copolymer C is 30 to 90% by weight and wherein copolymer C is prepared in a solvent L to yield solution S; b) providing a dope solution D comprising at least one polymer P; c) mixing solution S and dope solution D; d) preparing a membrane by bringing the mixture of solution S and dope solution D into contact with at least one coagulating agent.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: October 15, 2019
    Assignee: BASF SE
    Inventors: Martin Weber, Nicole Janssen, Hartwig Voss, Jacek Malisz, Martin Heijnen, Edoardo Menozzi
  • Publication number: 20180272286
    Abstract: A membrane contains a polymer composition is described. The polymer composition contains a) at least one polymer of PA, PVA, Cellulose CA, CTA, CA-triacetate blend, cellulose ester, cellulose nitrate, regenerated cellulose, aromatic, aromatic/aliphatic or aliphatic polyamide, aromatic, aromatic/aliphatic or aliphatic polyimide, PBI, PBIL, PAN, PAN-PVC copolymer, PAN-methallyl sulfonate copolymer, PEI, PEEK, sulfonated SPEEK, PPO, poly-carbonate, polyester, PTFE, PVDF, PP, a polyelectrolyte complex, PMMA, PDMS, aromatic, aromatic/aliphatic or aliphatic polyimide urethane, aromatic, aromatic/aliphatic or aliphatic polyamidimide, crosslinked polyimide or poly-arylene ether, PSU, PPSU and PESU, and b) at least one dope polymer DP1, which is a polyalkylene oxide with a molecular mass Mw of more than 100,000 g/mol and/or a K-value of 60 or 20 more.
    Type: Application
    Filed: September 7, 2016
    Publication date: September 27, 2018
    Applicant: BASF SE
    Inventors: Oliver GRONWALD, Martin WEBER, Hartwig VOSS, Martin HEIJNEN
  • Publication number: 20180126338
    Abstract: Polymer composition comprising a) an oligo- or polyurethane U of the formula (I) wherein k and n independently are numbers from 1 to 100, m is from the range 1-100, (X) is a block of formula (II) and (Y) is a block of the formula (III), (A) is a residue of an aliphatic or aromatic diisocyanate linker, (B) is a residue of a linear oligo- or polysiloxane containing alkanol end groups, and optionally further containing one or more aliphatic ether moieties, and (C) is an aromatic oligo- or polyarylene ether block that is at least partly etherified at its terminal positions with one alkylene glycol unit; or a mixture of such oligo- or polyurethanes; and b) one or more further organic polymers P selected from the group consisting of polyvinyl pyrrolidone, polyvinyl acetates, cellulose acetates, polyacrylonitriles, polyamides, polyolefines, polyesters, polyarylene ethers, polysulfones, polyethersulfones, polyphenylenesulfones, polycarbonates, polyether ketones, sulfonated polyether ketones, polyamide sulfones, polyv
    Type: Application
    Filed: May 19, 2016
    Publication date: May 10, 2018
    Applicant: BASF SE
    Inventors: Martin WEBER, Berend ELING, Martin HEIJNEN, Oliver GRONWALD, Hartwig VOSS, Jacek MALISZ, Davis Yohanes ARIFIN
  • Publication number: 20170239627
    Abstract: Process for making a membrane M comprising the following steps: a) preparing a copolymer C, wherein said copolymer C comprises blocks of at least one polyarylene ether A and blocks of polyalkylene oxide PAO, wherein the content of polyethyleneoxide in copolymer C is 30 to 90% by weight and wherein copolymer C is prepared in a solvent L to yield solution S; b) providing a dope solution D comprising at least one polymer P; c) mixing solution S and dope solution D; d) preparing a membrane by bringing the mixture of solution S and dope solution D into contact with at least one coagulating agent.
    Type: Application
    Filed: July 30, 2015
    Publication date: August 24, 2017
    Applicant: BASF SE
    Inventors: Martin WEBER, Nicole JANSSEN, Hartwig VOSS, Jacek MALISZ, Martin HEIJNEN, Edoardo MENOZZI
  • Patent number: 9555374
    Abstract: The present invention relates to a method of conditioning suspended catalysts, wherein at least part of the catalyst-comprising reaction medium is taken from one or more reactors and the suspended, at least partially inactivated catalysts are separated off and purified by means of at least one membrane filtration, with at least one of the membrane filtrations being carried out as a diafiltration.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: January 31, 2017
    Assignee: BASF SE
    Inventors: Hartwig Voss, Ekkehard Schwab, Bram Willem Hoffer, Till Gerlach
  • Publication number: 20160002363
    Abstract: The present invention relates to an improved process for filtering aqueous fermentation broths comprising glucans and biomass using symmetrical tubular membranes.
    Type: Application
    Filed: February 26, 2014
    Publication date: January 7, 2016
    Inventors: Jörg Therre, Hartwig Voß, Tobias Käppler, Sascha Rollie, Stephan Freyer, Bernd Leonhardt
  • Patent number: 9132387
    Abstract: The invention relates to a process for working-up a reaction mixture (5) comprising polyetherol and dissolved alkali metal comprising catalyst, wherein at least alkali metal ions of the dissolved alkali metal comprising catalyst are partially or completely removed from the mixture by a membrane separation process, the process comprising following steps: (a) feeding the reaction mixture (5) comprising polyetherol and dissolved alkali metal comprising catalyst into a first chamber (1) of a separation unit (3), (b) feeding a solvent into a second chamber (7) of the separation unit (3), the first chamber (1) and the second chamber (7) being separated by a membrane (9), (c) transporting at least the alkali metal ions of the alkali metal comprising catalyst from the first chamber (1) into the second chamber by passing through the membrane (9).
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 15, 2015
    Assignee: BASF SE
    Inventors: Vinit Chilekar, Hartwig Voss, Jelan Kuhn, Ann De Colvenaer, Andreas Brodhagen
  • Publication number: 20140335182
    Abstract: The present invention relates to a process for preparing an aqueous polymer dispersion by free-radical emulsion polymerization of a monomer mixture which comprises N,N-diethylaminoethyl methacrylate, to the polymer dispersion obtainable by this process, and to the use thereof.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Maximilian Angel, Karl Kolter, Hartwig Voß
  • Patent number: 8614356
    Abstract: A process for preparing tolylenediamine by hydrogenating dinitrotoluene with hydrogen in the presence of a suspended catalyst in a vertically upright reactor (1), at the upper end of which is arranged a motive jet nozzle (2) through which the reaction mixture drawn off from the reactor bottom, via an external loop, is sprayed into the upper region of the reactor (1) and then flows into a central inserted tube (4) which is arranged in the longitudinal direction of the reactor, flows through the latter from the top downward and flows upward again outside the inserted tube (4) in an internal loop motion, with a heat exchanger (6) in the interior of the reactor (1), through which cooling water flows, and absorbs some of the heat of reaction as it does so, with a feed for the dinitrotoluene at the upper end of the reactor (1) and a feed for the hydrogen at the lower end of the reactor (1), and wherein, in addition to the heat exchanger (6) arranged in the interior of the reactor (1), a further heat exchanger (W
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: December 24, 2013
    Assignee: BASF SE
    Inventors: Joana Coelho Tsou, Steffen Oehlenschlaeger, Ekkehard Schwab, Wolfgang Mackenroth, Hartwig Voss, Stefan Maixner, Samuel Neto, Sven Boehmeke, Frederik Van Laar
  • Patent number: 8608828
    Abstract: The use of solutions of organic polymers for production of carbon membranes suitable for gas separation, and a process for producing carbon membranes suitable for gas separation, comprising the steps of a) coating a porous substrate with solutions of organic polymers, b) drying the polyester coating on the porous substrate by removing the solvent, and c) pyrolyzing the polyester coating on the porous substrate to form the carbon membrane suitable for gas separation, it being possible to conduct any of steps a) to c) or the sequence of steps a) to c) more than once.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 17, 2013
    Assignee: BASF SE
    Inventors: Hartwig Voss, Joerg Therre, Nadine Kaltenborn, Hannes Richter, Ingolf Voigt
  • Patent number: 8608837
    Abstract: The use of solutions of ethylenically unsaturated polyesters for production of carbon membranes suitable for gas separation, and a process for producing carbon membranes suitable for gas separation, comprising the steps of a) coating a porous substrate with a solution of ethylenically unsaturated polyester, b) drying the polyester coating on the porous substrate by removing the solvent, and c) pyrolyzing the polyester coating on the porous substrate to form the carbon membrane suitable for gas separation, it being possible to conduct any of steps a) to c) or the sequence of steps a) to c) more than once.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 17, 2013
    Assignee: BASF SE
    Inventors: Hartwig Voss, Joerg Therre, Nadine Kaltenborn, Susanne Kaemnitz
  • Publication number: 20130146537
    Abstract: The invention relates to a process for working-up a reaction mixture (5) comprising polyetherol and dissolved alkali metal comprising catalyst, wherein at least alkali metal ions of the dissolved alkali metal comprising catalyst are partially or completely removed from the mixture by a membrane separation process, the process comprising following steps: (a) feeding the reaction mixture (5) comprising polyetherol and dissolved alkali metal comprising catalyst into a first chamber (1) of a separation unit (3), (b) feeding a solvent into a second chamber (7) of the separation unit (3), the first chamber (1) and the second chamber (7) being separated by a membrane (9), (c) transporting at least the alkali metal ions of the alkali metal comprising catalyst from the first chamber (1) into the second chamber by passing through the membrane (9).
    Type: Application
    Filed: December 12, 2012
    Publication date: June 13, 2013
    Inventors: Vinit CHILEKAR, Hartwig Voss, Jelan Kuhn, Ann De Colvenaer, Andreas Brodhagen
  • Publication number: 20120238448
    Abstract: The present invention relates to a method for controlling phytopathogenic microorganisms by treating the crop to be protected, the soil or the plant propagation material with an effective amount of copper salt particles which comprise a water-soluble polymer and which have a primary particle diameter of from 1 to 200 nm. The invention also relates to an aqueous suspension of the abovementioned copper salt particles and the use of this suspension in crop protection.
    Type: Application
    Filed: November 29, 2010
    Publication date: September 20, 2012
    Applicant: BASF SE
    Inventors: Karl-Heinrich Schneider, Andrey Karpov, Hartwig Voss, Sarah Dunker, Michael Merk, Alexander Kopf, Shoichi Kondo
  • Publication number: 20120232267
    Abstract: A process continuously hydrogenating unsaturated compounds, in which particles of a first hydrogenation catalyst are suspended in a liquid phase in which an unsaturated compound is dissolved, the liquid phase, in the presence of a hydrogenous gas at a first partial hydrogen pressure and at a first temperature, is conducted through a packed bubble column reactor in cocurrent counter to the direction of gravity, the effluent from the bubble column reactor is sent to a gas-liquid separation, the liquid phase is sent to a crossfiltration to obtain a retentate and a filtrate, the retentate is recycled into the bubble column reactor and the filtrate, in the presence of a hydrogenous gas at a second partial hydrogen pressure and at a second temperature, is passed over a bed of a second hydrogenation catalyst, the second partial hydrogen pressure is at least 10 bar higher than the first partial hydrogen pressure.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Bram Willem Hoffer, Hartwig Voss, Ekkehard Schwab, Udo Rheude, Gerd Kaibel, Mathias Haake, Jan Eberhardt, Michael Karcher
  • Patent number: 8197645
    Abstract: The present invention relates to a process for separating at least one propylene glycol from a mixture (M) comprising water and said propylene glycol, said process comprising (I) evaporating the mixture in at least two evaporation and/or distillation stages at decreasing operating pressures of the evaporators and/or distillation columns obtaining mixture (M?) and mixture (M?); (II) separating the mixture (M?) obtained in (I) in at least one further distillation step, obtaining a mixture (M-I) comprising at least 70 wt.-% of water and a mixture (M-II) comprising less than 30 wt.-% of water.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 12, 2012
    Assignees: BASF Aktiengesellschaft, The Dow Chemical Company
    Inventors: Armin Diefenbacher, Hans-Georg Goebbel, Stefan Bitterlich, Hartwig Voss, Henning Schultz, Anna Forlin, Renate Patrascu
  • Patent number: 8196755
    Abstract: A process for the production of a composite membrane, one or more microporous separation layers comprising a zeolite of the MFI type being produced by hydrothermal synthesis on a porous substrate, wherein one or more additives from the group consisting of linear (C1-C4)-alcohols, ammonia, primary, secondary and tertiary amines having in each case (C1-C4)-alkyl radicals, (C1-C4)-aminoalcohols and (C3-C4)-ketones are added to the synthesis solution for the hydrothermal synthesis.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: June 12, 2012
    Assignee: BASF SE
    Inventors: Armin Diefenbacher, Hartwig Voss, Gunter Schuch, Manfred Noack, Ingolf Voigt, Hannes Richter, Juergen Caro
  • Publication number: 20120079943
    Abstract: The use of solutions of ethylenically unsaturated polyesters for production of carbon membranes suitable for gas separation, and a process for producing carbon membranes suitable for gas separation, comprising the steps of: a) coating a porous substrate with a solution of ethylenically unsaturated polyester, b) drying the polyester coating on the porous substrate by removing the solvent, c) pyrolyzing the polyester coating on the porous substrate to form the carbon membrane suitable for gas separation, it being possible to conduct any of steps a) to c) or the sequence of steps a) to c) more than once.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: BASF SE
    Inventors: Hartwig VOß, Jörg Therre
  • Publication number: 20120079944
    Abstract: There is described a process for producing carbon membranes suitable for gas separation, comprising the steps of: a) coating a porous substrate with a solution of at least one organic polymer which can be converted to a carbon membrane by pyrolysis, b) drying the polymer coating on the porous substrate by removing the solvent, c) pyrolyzing the polymer coating on the porous substrate to form the carbon membrane suitable for gas separation, it being possible to conduct any of steps a) to c) or the sequence of steps a) to c) more than once, and the pyrolysis in step c) being effected at a temperature higher than the baking temperature of the porous substrate.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: BASF SE
    Inventors: Hartwig VOß, Jörg Therre
  • Publication number: 20120071316
    Abstract: The present invention relates to a method of conditioning suspended catalysts, wherein at least part of the catalyst-comprising reaction medium is taken from one or more reactors and the suspended, at least partially inactivated catalysts are separated off and purified by means of at least one membrane filtration, with at least one of the membrane filtrations being carried out as a diafiltration.
    Type: Application
    Filed: April 26, 2010
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: Hartwig Voss, Ekkehard Schwab, Bram Willem Hoffer, Till Gerlach