Patents by Inventor Henley Liu

Henley Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901338
    Abstract: An integrated circuit (IC) device is disclosed which includes at least a first hybrid bond interface layer disposed between adjacent wafers of a wafer stack. Routing within the hybrid bond interface layer allows test pads exposed on a top wafer of the wafer stack to electrically couple test keys within the wafer stack. By utilizing the routing within the hybrid bond interface layer to index electrical connections between adjacent wafers, IC dies stacked on the wafers may be fabricated with less mask sets as compared to conventional designs.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: February 13, 2024
    Assignee: XILINX, INC.
    Inventors: Myongseob Kim, Henley Liu, Cheang Whang Chang
  • Publication number: 20240038556
    Abstract: Methods for mitigating warpage on stacked wafers are provided herein. In one example, a method for mitigating warpage on stacked wafers includes depositing a first warpage compensating layer on a backside of a first wafer, stacking an active side of the first wafer on an active side of a second wafer to form a wafer stack having circuitry of the first wafer electrically connected to circuitry of the second wafer, and removing the first warpage compensating layer from the backside of the first wafer prior dicing the wafer stack.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Myongseob KIM, Henley LIU, Cheang-whang CHANG
  • Publication number: 20230140675
    Abstract: An integrated circuit (IC) device is disclosed which includes at least a first hybrid bond interface layer disposed between adjacent wafers of a wafer stack. Routing within the hybrid bond interface layer allows test pads exposed on a top wafer of the wafer stack to electrically couple test keys within the wafer stack. By utilizing the routing within the hybrid bond interface layer to index electrical connections between adjacent wafers, IC dies stacked on the wafers may be fabricated with less mask sets as compared to conventional designs.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 4, 2023
    Inventors: Myongseob KIM, Henley LIU, Cheang Whang CHANG
  • Patent number: 11355412
    Abstract: A chip package assembly and method for fabricating the same are provided which utilize a plurality of extra-die heat transfer posts for improved thermal management. In one example, a chip package assembly is provided that includes a first integrated circuit (IC) die mounted to a substrate, a cover disposed over the first IC die, and a plurality of extra-die conductive posts disposed between the cover and substrate. The extra-die conductive posts provide a heat transfer path between the cover and substrate that is laterally outward of the first IC die.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 7, 2022
    Assignee: XILINX, INC.
    Inventors: Jaspreet Singh Gandhi, Gamal Refai-Ahmed, Henley Liu, Myongseob Kim, Tien-Yu Lee, Suresh Ramalingam, Cheang-Whang Chang
  • Patent number: 11205639
    Abstract: An integrated circuit device and techniques for manufacturing the same are described therein. The integrated circuit device leverages two or more pairs of stacked integrated circuit dies that are fabricated in mirror images to reduce the complexity of manufacturing, thus reducing cost. In one example, an integrated circuit device is provided that includes an integrated circuit (IC) die stack. The IC die stack includes first, second, third and fourth IC dies. The first and second IC dies are coupled by their active sides and include arrangements of integrated circuitry that are mirror images of each other. The third and fourth IC dies are also coupled by their active sides and include arrangements of integrated circuitry that are mirror images of each other.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: December 21, 2021
    Assignee: XILINX, INC.
    Inventors: Myongseob Kim, Henley Liu, Cheang Whang Chang
  • Patent number: 11114344
    Abstract: Integrated circuit (IC) dies and method for manufacturing the same are described herein that mitigate pattern loading effects during manufacture. In one example, the IC includes a die body having a first circuit block separated from an adjacent second circuit block by a buffer zone. The first and second circuit blocks have first and second transistors that are at least partially fabricated from a gate metal layer and disposed immediately adjacent the buffer zone. A dummy structure is formed in the buffer zone and is also at least partially fabricated from the gate metal layer. An amount of gate metal layer material in the dummy structure is selected to mitigate differences in the amount of gate metal layer material in regions of first and second circuit blocks that neighbor each other across the buffer zone.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: September 7, 2021
    Assignee: XILINX, INC.
    Inventors: Hui-Wen Lin, Nui Chong, Myongseob Kim, Henley Liu, Ping-Chin Yeh, Cheang-whang Chang
  • Publication number: 20210265312
    Abstract: An integrated circuit device and techniques for manufacturing the same are described therein. The integrated circuit device leverages two or more pairs of stacked integrated circuit dies that are fabricated in mirror images to reduce the complexity of manufacturing, thus reducing cost. In one example, an integrated circuit device is provided that includes an integrated circuit (IC) die stack. The IC die stack includes first, second, third and fourth IC dies. The first and second IC dies are coupled by their active sides and include arrangements of integrated circuitry that are mirror images of each other. The third and fourth IC dies are also coupled by their active sides and include arrangements of integrated circuitry that are mirror images of each other.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 26, 2021
    Inventors: Myongseob KIM, Henley LIU, Cheang Whang CHANG
  • Patent number: 11054461
    Abstract: Device(s) and method(s) related generally to a wafer or die stack are disclosed. In one such device, a die stack of two or more integrated circuit dies has associated therewith test circuits corresponding to each level of the die stack each with a set of pads. A test data-input path includes being from: a test data-in pad through a test circuit to a test data-out pad of each of the test circuits; and the test data-out pad to the test data-in pad between consecutive levels of the test circuits. Each of the set of pads includes the test data-in pad and the test data-out pad respectively thereof. A test data-output path is coupled to the test data-out pad of a level of the levels.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: July 6, 2021
    Assignee: XILINX, INC.
    Inventors: Nui Chong, Amitava Majumdar, Cheang-Whang Chang, Henley Liu, Myongseob Kim, Albert Shih-Huai Lin
  • Patent number: 10971474
    Abstract: A chip package and method of fabricating the same are described herein. The chip package generally includes a stand-off which spaces a die from a substrate to control the collapse of a solder joint coupling the die to the substrate.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 6, 2021
    Assignee: XILINX, INC.
    Inventors: Jaspreet Singh Gandhi, Henley Liu
  • Publication number: 20200303341
    Abstract: An electronic device and method for fabricating the same are disclosed herein. In one example the electronic device includes a substrate, a first die stack, and a second die stack. The first die stack includes a first functional die and a first dummy die. The first functional die is mounted to the substrate. The second stack includes a plurality of serially stacked second functional dies mounted to the substrate. The first dummy die is stacked on the first functional die. The first dummy die has a top surface that is substantially coplanar with a top surface of the second die stack. In one particular example, the first die stack includes a logic die and the second die stack includes a plurality of serially stacked memory dies.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Applicant: Xilinx, Inc.
    Inventors: Myongseob Kim, Henley Liu, Cheang-Whang Chang, Jaspreet Singh Gandhi
  • Patent number: 10770430
    Abstract: An electronic device and method for fabricating the same are disclosed herein. In one example the electronic device includes a substrate, a first die stack, and a second die stack. The first die stack includes a first functional die and a first dummy die. The first functional die is mounted to the substrate. The second stack includes a plurality of serially stacked second functional dies mounted to the substrate. The first dummy die is stacked on the first functional die. The first dummy die has a top surface that is substantially coplanar with a top surface of the second die stack. In one particular example, the first die stack includes a logic die and the second die stack includes a plurality of serially stacked memory dies.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: September 8, 2020
    Assignee: XILINX, INC.
    Inventors: Myongseob Kim, Henley Liu, Cheang-Whang Chang, Jaspreet Singh Gandhi
  • Patent number: 10720377
    Abstract: Examples described herein provide for an electronic device apparatus with multiple thermally conductive paths for heat dissipation. In an example, an electronic device apparatus includes a package comprising a die attached to a package substrate. The electronic device apparatus further includes a ring stiffener disposed around the die and on the package substrate, a heat sink disposed on the package, and a wedge disposed between the heat sink and the ring stiffener.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 21, 2020
    Assignee: XILINX, INC.
    Inventors: Gamal Refai-Ahmed, Ho Hyung Lee, Hui-Wen Lin, Henley Liu, Suresh Ramalingam
  • Patent number: 10692837
    Abstract: A chip package assembly and method for fabricating the same are provided which utilize at least one modular core dice to reduce the cost of manufacture. The modular core dice include at least two die disposed on a wafer segment that are separated by a scribe lane. In one example, a chip package assembly is provided that includes an interconnect substrate stacked below a first wafer segment. The first wafer segment has a first die spaced from a second die by a first scribe lane. The interconnect substrate has conductive routing that is electrically connected to the first die and the second die through die connections.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: June 23, 2020
    Assignee: XILINX, INC.
    Inventors: Myongseob Kim, Henley Liu, Cheang-Whang Chang, Nui Chong
  • Publication number: 20200152546
    Abstract: Examples described herein provide for an electronic device apparatus with multiple thermally conductive paths for heat dissipation. In an example, an electronic device apparatus includes a package comprising a die attached to a package substrate. The electronic device apparatus further includes a ring stiffener disposed around the die and on the package substrate, a heat sink disposed on the package, and a wedge disposed between the heat sink and the ring stiffener.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Applicant: Xilinx, Inc.
    Inventors: Gamal Refai-Ahmed, Ho Hyung Lee, Hui-Wen Lin, Henley Liu, Suresh Ramalingam
  • Patent number: 10629512
    Abstract: A method and apparatus are provided that includes an integrated circuit die having an in-chip heat sink, along with an electronic device and a chip package having the same, and methods for fabricating the same. In one example, an integrated circuit die has an in-chip heat sink that separates a high heat generating integrated circuit from another integrated circuit disposed within the die. The in-chip heat sink provides a highly conductive heat transfer path from interior portions of the die to at least one exposed die surface.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: April 21, 2020
    Assignee: XILINX, INC.
    Inventors: Hong-Tsz Pan, Jonathan Chang, Nui Chong, Henley Liu, Gamal Refai-Ahmed, Suresh Ramalingam
  • Publication number: 20200105642
    Abstract: A chip package assembly and method for fabricating the same are provided which utilize a plurality of extra-die heat transfer posts for improved thermal management. In one example, a chip package assembly is provided that includes a first integrated circuit (IC) die mounted to a substrate, a cover disposed over the first IC die, and a plurality of extra-die conductive posts disposed between the cover and substrate. The extra-die conductive posts provide a heat transfer path between the cover and substrate that is laterally outward of the first IC die.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Applicant: Xilinx, Inc.
    Inventors: Jaspreet Singh Gandhi, Gamal Refai-Ahmed, Henley Liu, Myongseob Kim, Tien-Yu Lee, Suresh Ramalingam, Cheang-Whang Chang
  • Patent number: 10593638
    Abstract: Methods and apparatus are described for enabling copper-to-copper (Cu—Cu) bonding at reduced temperatures (e.g., at most 200° C.) by significantly reducing Cu oxide formation. These techniques provide for faster cycle time and entail no extraordinary measures (e.g., forming gas). Such techniques may also enable longer queue (Q) or staging times. One example semiconductor structure generally includes a semiconductor layer, an adhesion layer disposed above the semiconductor layer, an anodic metal layer disposed above the adhesion layer, and a cathodic metal layer disposed above the anodic metal layer. An oxidation potential of the anodic metal layer may be greater than an oxidation potential of the cathodic metal layer. Such a semiconductor structure may be utilized in fabricating IC packages implementing 2.5D or 3D integration.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 17, 2020
    Assignee: XILINX, INC.
    Inventors: Jaspreet Singh Gandhi, Suresh Ramalingam, Henley Liu
  • Patent number: 10527670
    Abstract: Integrated (IC) package testing systems and methods for testing an IC package are provided herein that accommodate IC packages having different die heights. In one example, the IC package testing system includes a test fixture base, a socket, and a test fixture head. The socket is disposed on the test fixture base and configured to receive an IC package for testing. The test fixture head is movable towards and away from the base. The test fixture head includes a base plate and a plurality of independently movable pushers. The plurality of pushers are configured to engage the IC package disposed the socket.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: January 7, 2020
    Assignee: XILINX, INC.
    Inventors: Gamal Refai-Ahmed, Ivor G. Barber, Suresh Ramalingam, Jaspreet Singh Gandhi, Tien-Yu Lee, Henley Liu, David M. Mahoney, Mohsen H. Mardi
  • Patent number: 10529645
    Abstract: Methods and apparatus are described for heat management in an integrated circuit (IC) package using a lid with recessed areas in the inner surfaces of the lid. The recessed areas (e.g., trenches) provide receptacles for accepting a portion of a thermal interface material (TIM) that may be forced out when the lid is positioned on the TIM above one or more integrated circuit (IC) dies during fabrication of the IC package. In this manner, the TIM bond line thickness (BLT) between the lid and the IC die(s) may be reduced for decreased thermal resistance, but sufficient interfacial adhesion is provided for the IC package with such a lid to avoid TIM delamination.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 7, 2020
    Assignee: XILINX, INC.
    Inventors: Jaspreet Singh Gandhi, Henley Liu, Tien-Yu Lee, Gamal Refai-Ahmed, Myongseob Kim, Ferdinand F. Fernandez, Ivor G. Barber, Suresh Ramalingam
  • Publication number: 20200006186
    Abstract: A method and apparatus are provided that includes an integrated circuit die having an in-chip heat sink, along with an electronic device and a chip package having the same, and methods for fabricating the same. In one example, an integrated circuit die has an in-chip heat sink that separates a high heat generating integrated circuit from another integrated circuit disposed within the die. The in-chip heat sink provides a highly conductive heat transfer path from interior portions of the die to at least one exposed die surface.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Applicant: Xilinx, Inc.
    Inventors: Hong-Tsz Pan, Jonathan Chang, Nui Chong, Henley Liu, Gamal Refai-Ahmed, Suresh Ramalingam