Patents by Inventor Henry R. Halperin

Henry R. Halperin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9301705
    Abstract: A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures includes an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures, such as ablation of cardiac arrhythmias. The combined electrophysiology and imaging antenna catheter may further include an ablation tip, and be used as an intracardiac device to deliver energy to selected areas of tissue and visualize the resulting ablation lesions.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: April 5, 2016
    Assignee: Johns Hopkins University School of Medicine
    Inventors: Henry R. Halperin, Ronald D. Berger, Ergin Atalar, Elliott R. McVeigh, Albert Lardo, Hugh Caikins, Joao Lima
  • Patent number: 9295828
    Abstract: An implantable lead includes a lead conductor having a length extending from a proximal end to a distal end. A self-resonant inductor is connected in series along a portion of the length of the lead conductor. The self-resonant inductor includes a single length of conductive material including a dielectric coating substantially surrounding the single length of conductive material. The self-resonant inductor includes a first coiled or spiral conductor disposed along an inductor section spanning in a first direction from a first location to a second location. A second coiled or spiral conductor is disposed along the inductor section spanning in a second direction from the second location to the first location, where the second direction is opposite the first direction. A third coiled or spiral conductor is disposed along the inductor section spanning in the first direction from the first location to the second location.
    Type: Grant
    Filed: November 18, 2012
    Date of Patent: March 29, 2016
    Assignee: Greatbatch Ltd.
    Inventors: Henry R. Halperin, Robert A. Stevenson, Kishore Kumar Kondabatni, Christine A. Frysz
  • Patent number: 9259543
    Abstract: A method for improving the cardiac output of a patient who is suffering from pulseless electrical activity or shock and yet still displays some myocardial wall motion including sensing myocardial activity to determine the presence of residual left ventricular pump function having a contraction or ejection phase and a filling or relaxation phase. In such cases, a compressive force is repeatedly applied to the chest based on the sensed myocardial activity such that the compressive force is applied during at least some of the ejection phases and is ceased during at least some of the relaxation phases to permit residual cardiac filling, thereby enhancing cardiac output and organ perfusion. Also incorporated may be a logic circuit capable of utilizing multiple sensing modalities and optimizing the synchronization pattern between multiple phasic therapeutic modalities and myocardial residual mechanical function.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: February 16, 2016
    Assignee: Zoll Medical Corporation
    Inventors: Norman Paradis, David Barash, Henry R. Halperin, Gary Freeman
  • Patent number: 9248283
    Abstract: A band stop filter is provided for a lead wire of an active medical device (AMD). The band stop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the band stop filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the band stop filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: February 2, 2016
    Assignee: Greatbatch Ltd.
    Inventors: Henry R. Halperin, Robert A. Stevenson
  • Patent number: 9242090
    Abstract: Herein is disclosed a probe, including a first electrode disposed at least partially on the probe surface, a second electrode disposed at least partially on the probe surface, a first conductor electrically coupled to the first electrode, a second conductor electrically coupled to the second electrode, and a reactive element electrically coupling the first conductor and the second conductor.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: January 26, 2016
    Assignees: MRI Interventions Inc., Greatbatch Ltd.
    Inventors: Ergin Atalar, Robert Susil, Albert Lardo, Henry R. Halperin
  • Patent number: 9119968
    Abstract: A band stop filter is provided for a lead wire of an active medical device (AMD). The band stop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the band stop filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the band stop filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: September 1, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Henry R. Halperin, Robert A. Stevenson
  • Publication number: 20150164739
    Abstract: A chest compressions monitor for measuring the depth of chest compressions achieved during CPR. A displacement detector produces a displacement indicative signal indicative of the displacement of the CPR recipient's chest toward the recipient's spine. A signaling mechanism provides chest compression indication signals directing a chest compression force being applied to the chest and a frequency of such compressions.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Applicant: JOHNS HOPKINS UNIVERSITY
    Inventors: Henry R. Halperin, Ronald D. Berger
  • Publication number: 20150148717
    Abstract: A system applies cardiopulmonary resuscitation (CPR) to a recipient. An automated controller is provided together with a compression device which periodically applies a force to a recipient's thorax under control of the automated controller. A band is adapted to be placed around a portion of the torso of the recipient corresponding to the recipient's thorax. A driver mechanism shortens and lengthens the circumference of the band. By shortening the circumference of the band, radial forces are created acting on at least lateral and anterior portions of the thorax. A translating mechanism may be provided for translating the radial forces to increase the concentration of anterior radial forces acting on the anterior portion of the thorax. The driver mechanism may comprise a tension device for applying a circumference tensile force to the band. The driver mechanism may comprise an electric motor, a pneumatic linear actuator, or a contracting mechanism defining certain portions of the circumference of the band.
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Applicant: Johns Hopkins University
    Inventor: Henry R. Halperin
  • Patent number: 9031670
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to account for a shift in its inductance to a second inductive value when shielded.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: May 12, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Patent number: 9008799
    Abstract: A bandstop filter having optimum component values is provided for a lead of an active implantable medical device (AIMD). The bandstop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the implantable lead of the AIMD, wherein values of capacitance and inductance are selected such that the bandstop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the bandstop filter to attenuate current flow through the implantable lead along a range of selected frequencies.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: April 14, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Henry R. Halperin
  • Patent number: 8989870
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted lead to the energy dissipating surface through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted lead's impedance characteristics.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: March 24, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo
  • Patent number: 8977355
    Abstract: A bandstop filter having optimum component values is provided for a lead of an active implantable medical device (AIMD). The bandstop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the implantable lead of the AIMD, wherein values of capacitance and inductance are selected such that the bandstop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the bandstop filter to attenuate current flow through the implantable lead along a range of selected frequencies.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 10, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Henry R. Halperin
  • Patent number: 8968224
    Abstract: A chest compressions monitor for measuring the depth of chest compressions achieved during CPR. A displacement detector produces a displacement indicative signal indicative of the displacement of the CPR recipient's chest toward the recipient's spine. A signaling mechanism provides chest compression indication signals directing a chest compression force being applied to the chest and a frequency of such compressions.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Johns Hopkins University
    Inventors: Henry R. Halperin, Ronald D. Berger
  • Publication number: 20150031975
    Abstract: Herein is disclosed a probe, including a first electrode disposed at least partially on the probe surface, a second electrode disposed at least partially on the probe surface, a first conductor electrically coupled to the first electrode, a second conductor electrically coupled to the second electrode, and a reactive element electrically coupling the first conductor and the second conductor.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 29, 2015
    Inventors: Ergin Atalar, Robert Susil, Albert Lardo, Henry R. Halperin
  • Patent number: 8918189
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: December 23, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Patent number: 8903505
    Abstract: A medical lead system includes at least one bandstop filter for attenuating current flow through the lead across a range of frequencies. The bandstop filter has an overall circuit Q wherein the resultant 3 dB bandwidth is at least 10 kHz. The values of capacitance and inductance of the bandstop filter are selected such that the bandstop filter is resonant at a selected center frequency or range of frequencies. Preferably, the bandstop filter has an overall circuit Q wherein the resultant 10 dB bandwidth is at least 10 kHz. Such bandstop filters are backwards compatible with known implantable deployment systems and extraction systems.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 2, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Warren S. Dabney, Kishore Kumar Kondabatni, Christine A. Frysz, Robert Shawn Johnson, Holly Noelle Moschiano, Barry C. Muffoletto
  • Patent number: 8897887
    Abstract: A band stop filter is provided for a lead wire of an active medical device (AMD). The band stop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the band stop filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the band stop filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: November 25, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Henry R. Halperin, Robert A. Stevenson
  • Patent number: 8855785
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire to the energy dissipating surface. In alternate configurations, the switch may be disposed so that it electrically opens the implanted lead or the leadwire when diverting energy to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: October 7, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Publication number: 20140296952
    Abstract: A shielded component or network for an active medical device (AMD) implantable lead includes an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to account for a shift in its inductance to a second inductive value when shielded.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 2, 2014
    Applicant: Greatbatch Ltd.
    Inventors: Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Robert A. Stevenson, Henry R. Halperin, Albert C. Lardo, Kishore Kumar Kondabatni
  • Patent number: 8849403
    Abstract: A lead extending exteriorly from an active implantable medical device (AIMD) is at least partially ensheathed within an electromagnetic interference (EMI) shield. The AIMD has a conductive equipotential surface to which the EMI shield may be conductively coupled. An impeding circuit may be provided for raising the high frequency impedance of the lead. An energy diversion circuit may also be provided for conductively coupling the lead to the EMI shield.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 30, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Robert A. Stevenson, Warren S. Dabney, Holly Noelle Moschiano, Kishore Kumar Kondabatni, Neal Nesselbeck, Joseph Spaulding, Henry R. Halperin, Albert C. Lardo