Patents by Inventor Herfried Karl Wieczorek
Herfried Karl Wieczorek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10955567Abstract: An improved scintillator nanocomposite comprising nanoparticles with scintillating properties and a diameter between 10 and 50 nanometer and a first matrix material comprises is obtained by introducing the nanoparticles into a dispersing medium to form a stable suspension. The dispersing medium is a precursor to the first matrix material, which is cured to form the first matrix material.Type: GrantFiled: November 7, 2016Date of Patent: March 23, 2021Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Aneta Wiatrowska, Herfried Karl Wieczorek, Cornelis Reinder Ronda, Wilhelmus Cornelis Keur, Malgorzata Nachman
-
Patent number: 10942282Abstract: The invention relates to a combined imaging detector for detection of gamma and x-ray quanta comprising an x-ray detector (31) for generating x-ray detection signals in response to detected x-ray quanta and a gamma detector (32) for generating gamma detection signals in response to detected gamma quanta. The x-ray detector (31) and the gamma detector (32) are arranged in a stacked configuration along a radiation-receiving direction (33). The gamma detector (32) comprises a gamma collimator plate (320) comprising a plurality of pinholes (321), and a gamma conversion layer (322, 324) for converting detected gamma quanta into gamma detection signals.Type: GrantFiled: September 6, 2017Date of Patent: March 9, 2021Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Herfried Karl Wieczorek, Johannes Wilhelmus Maria Jacobs, Herman Stegehuis, Alessandro Radaelli, Christiaan Kok, Peter Lex Alving
-
Patent number: 10899672Abstract: The invention relates to a ceramic material (14) for generating light when irradiated with radiation, wherein the ceramic material comprises a stack of layers (15, 16) having different compositions and/or different dopings. The ceramic material may be used in a spectral computed tomography (CT) detector, in order to spectrally detect x-rays, or it may be used as a ceramic gain medium of a laser such that temperature gradients and corresponding thermo-mechanical stresses within the gain medium can be reduced.Type: GrantFiled: September 15, 2015Date of Patent: January 26, 2021Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Herfried Karl Wieczorek, Jacobus Gerardus Boerekamp, Daniela Buettner, Anne-Marie Andree Van Dongen, Wilhelmus Cornelis Keur, Cornelis Reinder Ronda, Sandra Johanna Maria Paula Spoor, Aneta Wiatrowska, Onno Jan Wimmers
-
Publication number: 20210012546Abstract: An imaging system (10) includes a first imaging device (12); a second imaging device (14) of a different modality than the first imaging device; a display device (24); and at least one electronic processor (20) programmed to: operate the first imaging device to acquire first imaging data of a subject; operate the second imaging device to acquire second imaging data of the subject; compare the first imaging data and the second imaging data to detect a possible fault in the second imaging device; and control the display device to present an alert indicating the possible fault in the second imaging device in response to the detection of the possible fault in the second imaging device.Type: ApplicationFiled: March 25, 2019Publication date: January 14, 2021Inventors: Herfried Karl WIECZOREK, Andreas GOEDICKE
-
Publication number: 20200284922Abstract: The invention relates to a gamma radiation detector that provides compensation for the parallax effect. The gamma radiation detector includes a plurality of scintillator elements, a planar optical detector array, and a pinhole collimator that includes a pinhole aperture. Each scintillator element has a gamma radiation receiving face and an opposing scintillation light output face. The gamma radiation receiving face of each scintillator element faces the pinhole aperture for generating scintillation light in response to gamma radiation received from the pinhole aperture. The scintillator elements are arranged in groups. Each group has a group axis that is aligned with the pinhole aperture and is perpendicular to the radiation receiving face of each scintillator in that group. The scintillation light output faces of each of the scintillator elements are in optical communication with the planar optical detector array.Type: ApplicationFiled: October 24, 2017Publication date: September 10, 2020Inventors: Herfried Karl WIECZOREK, Torsten SOLF, Thomas FRACH
-
Patent number: 10679762Abstract: The invention relates to an analyzing grid for phase contrast imaging and/or dark-field imaging, a detector arrangement for phase contrast imaging and/or dark-field imaging comprising such analyzing grid, an X-ray imaging system comprising such detector arrangement, a method for manufacturing such analyzing grid, a computer program element for controlling such analyzing grid or detector arrangement for performing such method and a computer readable medium having stored such computer program element. The analyzing grid comprises a number of X-ray converting gratings. The X-ray converting gratings are configured to convert incident X-ray radiation into light or charge. The number of X-ray converting gratings comprises at least a first X-ray converting grating and a second X-ray converting grating.Type: GrantFiled: June 8, 2017Date of Patent: June 9, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Thomas Koehler, Roger Steadman Booker, Matthias Simon, Walter Ruetten, Herfried Karl Wieczorek
-
Patent number: 10656290Abstract: In the present invention a direct X-ray conversion layer comprises a material having a perovskite crystal structure. This is preferable since this enables constructing an X-ray detector with edge-on illuminated detector elements.Type: GrantFiled: May 27, 2017Date of Patent: May 19, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Herfried Karl Wieczorek, Cornelis Reinder Ronda, Roger Steadman, Matthias Simon
-
Patent number: 10573690Abstract: The invention relates to a method for producing a radiation detector used to detect ionizing radiation including a first inorganic-organic halide Perovskite material (24) as a direct converter material and/or as a scintillator material in a detector layer and to a radiation detector comprising a detector layer (24) produced by means of the steps of the method. In order to provide an approach for producing a thick layer (e.g. above 10 ???) of Perovskite material suitable for a radiation detector, it is proposed to grow the material selectively on a seeding layer (23), yielding in a thick polycrystalline layer. One suitable seeding layer (23) to grow lead Perovskite material is made of a bromide Perovskite material.Type: GrantFiled: September 16, 2016Date of Patent: February 25, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Herbert Lifka, Joanna Maria Elisabeth Baken, Reinder Coehoorn, Paulus Albertus Van Hal, Herfried Karl Wieczorek, Helga Hummel, Cornelis Reinder Ronda, Matthias Simon
-
Patent number: 10448909Abstract: The invention relates to a combined imaging detector (110) for the detection of x-ray and gamma quanta. The combined imaging detector (110) is adapted for simultaneous detection of gamma and x-ray quanta. The combined imaging detector (110) includes an x-ray anti-scatter grid (111), a layer of x-ray scintillator elements (112), a first photodetector array (113), a layer of gamma scintillator elements (114), and a second photodetector array (115) that are arranged in a stacked configuration along a radiation-receiving direction (116). The x-ray anti-scatter grid (111) comprises a plurality of septa (117A, B, C) that define a plurality of apertures (118) which are configured to collimate both x-ray quanta and gamma quanta received from the radiation receiving direction (116) such that received gamma quanta are collimated only by the x-ray anti-scatter grid (111). The use of the x-ray anti-scatter grid as a collimator for received gamma quanta results in a significantly lighter combined imaging detector.Type: GrantFiled: February 28, 2017Date of Patent: October 22, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Herfried Karl Wieczorek, Andreas Goedicke, Peter Lex Alving
-
Publication number: 20190304616Abstract: The invention relates to an analyzing grid for phase contrast imaging and/or dark-field imaging, a detector arrangement for phase contrast imaging and/or dark-field imaging comprising such analyzing grid, an X-ray imaging system comprising such detector arrangement, a method for manufacturing such analyzing grid, a computer program element for controlling such analyzing grid or detector arrangement for performing such method and a computer readable medium having stored such computer program element. The analyzing grid comprises a number of X-ray converting gratings. The X-ray converting gratings are configured to convert incident X-ray radiation into light or charge. The number of X-ray converting gratings comprises at least a first X-ray converting grating and a second X-ray converting grating.Type: ApplicationFiled: June 8, 2017Publication date: October 3, 2019Applicant: KONINKLIJKE PHILIPS N.V.Inventors: THOMAS KOEHLER, ROGER STEADMAN BOOKER, MATTHIAS SIMON, WALTER RUETTEN, HERFRIED KARL WIECZOREK
-
Patent number: 10422892Abstract: The present invention relates to a photon counting X-ray detector and detection method that effectively suppress polarization even under high flux conditions.Type: GrantFiled: November 20, 2013Date of Patent: September 24, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Antonius Johannes Maria Nellissen, Frank Verbakel, Johan Hendrik Klootwijk, Herfried Karl Wieczorek
-
Publication number: 20190243005Abstract: The invention relates to a combined imaging detector for detection of gamma and x-ray quanta comprising an x-ray detector (31) for generating x-ray detection signals in response to detected x-ray quanta and a gamma detector (32) for generating gamma detection signals in response to detected gamma quanta. The x-ray detector (31) and the gamma detector (32) are arranged in a stacked configuration along a radiation-receiving direction (33). The gamma detector (32) comprises a gamma collimator plate (320) comprising a plurality of pinholes (321), and a gamma conversion layer (322, 324) for converting detected gamma quanta into gamma detection signals.Type: ApplicationFiled: September 6, 2017Publication date: August 8, 2019Applicant: KONINKLIJKE PHILIPS N.V.Inventors: Herfried Karl WIECZOREK, Johannes Wilhelmus Maria JACOBS, Herman STEGEHUIS, Alessandro RADAELLI, Christiaan KOK, Peter Lex ALVING
-
Patent number: 10371830Abstract: A radiation detector for combined detection of low-energy radiation quanta and high-energy radiation quanta has a multi-layered structure. A rear scintillator layer (5) is configured to emit a burst of scintillation photons responsive to a high-energy radiation quantum being absorbed by the rear scintillator layer (5). A rear photosensor layer (6) attached to a back side of the rear scintillator layer (5) is configured to detect scintillation photons generated in the rear scintillator layer (5). A front scintillator layer (3) arranged in front of the rear scintillator layer (5) opposite the rear photosensor layer (6) is configured to emit a burst of scintillation photons responsive to a low-energy radiation quantumbeing absorbed by the front scintillator layer (3). A front photosensor layer (2) attached to a front side of the front scintillator layer (3) opposite the rear scintillator layer (5) is configured to detect scintillation photons generated in the front scintillator layer (3).Type: GrantFiled: October 14, 2016Date of Patent: August 6, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Johannes Wilhelmus Maria Jacobs, Jorrit Jorritsma, Heidrun Steinhauser, Onno Jan Wimmers, Peter Lex Alving, Herman Stegehuis, Herfried Karl Wieczorek
-
Publication number: 20190154851Abstract: In the present invention a direct X-ray conversion layer comprises a material having a perovskite crystal structure. This is preferable since this enables constructing an X-ray detector with edge-on illuminated detector elements.Type: ApplicationFiled: May 27, 2017Publication date: May 23, 2019Inventors: Herfried Karl WIECZOREK, Cornelis Reinder RONDA, Roger STEADMAN, Matthias SIMON
-
Publication number: 20190090827Abstract: The invention relates to a combined imaging detector (110) for the detection of x-ray and gamma quanta. The combined imaging detector (110) is adapted for simultaneous detection of gamma and x-ray quanta. The combined imaging detector (110) includes an x-ray anti-scatter grid (111), a layer of x-ray scintillator elements (112), a first photodetector array (113), a layer of gamma scintillator elements (114), and a second photodetector array (115) that are arranged in a stacked configuration along a radiation-receiving direction (116). The x-ray anti-scatter grid (111) comprises a plurality of septa (117A, B, C) that define a plurality of apertures (118) which are configured to collimate both x-ray quanta and gamma quanta received from the radiation receiving direction (116) such that received gamma quanta are collimated only by the x-ray anti-scatter grid (111). The use of the x-ray anti-scatter grid as a collimator for received gamma quanta results in a significantly lighter combined imaging detector.Type: ApplicationFiled: February 28, 2017Publication date: March 28, 2019Inventors: HERFRIED KARL WIECZOREK, ANDREAS GOEDICKE, PETER LEX ALVING
-
Publication number: 20190092696Abstract: The invention relates to a ceramic material (14) for generating light when irradiated with radiation, wherein the ceramic material comprises a stack of layers (15, 16) having different compositions and/or different dopings. The ceramic material may be used in a spectral computed tomography (CT) detector, in order to spectrally detect x-rays, or it may be used as a ceramic gain medium of a laser such that temperature gradients and corresponding thermo-mechanical stresses within the gain medium can be reduced.Type: ApplicationFiled: September 15, 2015Publication date: March 28, 2019Inventors: Herfried Karl WIECZOREK, Jacobus Gerardus BOEREKAMP, Daniela BUETTNER, Anne-Marie Andree VAN DONGEN, Wilhelmus Cornelis KEUR, Cornelis Reinder RONDA, Sandra Johanna Maria Paula SPOOR, Aneta WIATROWSKA, Onno Jan WIMMERS
-
Patent number: 10213173Abstract: A whole body SPECT system (10) includes a patient support (14) and a static gantry (12) which includes a plurality of rings (40a,40b,40c) of radiation detectors (42). The patient support (14) supports a patient and moves the patient in an axial direction (18) through the static gantry (12). One or more processors (20,24,32) connected to the plurality of detectors records strikes of gamma photons in the radiation detectors (42) and reconstruct the recorded strikes of the gamma photons into a whole body image.Type: GrantFiled: November 15, 2012Date of Patent: February 26, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Herfried Karl Wieczorek, Jinghan Ye, Lingxiong Shao
-
Publication number: 20190046137Abstract: The invention relates to the detection of x-ray and gamma quanta. In the medical imaging arrangement (100) an x-ray source (111) is attached to a first portion of an x-ray c-arm (113) and an x-ray detector (112) is attached to a second portion of the x-ray c-arm (113) for measuring x-ray transmission along a path (115) between the x-ray source and the x-ray detector. A gamma camera (114) is movable along a trajectory (116) that intersects the path between the x-ray source and the x-ray detector. Since the gamma camera can be moved along a trajectory that intersects the path between the x-ray source and the x-ray detector, the gamma camera can be used to generate a nuclear image that closely corresponds to the same region of interest as that which is imaged by the x-ray source and detector.Type: ApplicationFiled: February 16, 2017Publication date: February 14, 2019Applicant: KONINKLIJKE PHILIPS N.V.Inventors: Herfried Karl WIECZOREK, Andreas GOEDICKE, Herman STEGEHUIS, Johannes Wilhelmus Maria JACOBS
-
Publication number: 20180306933Abstract: An improved scintillator nanocomposite comprising nanoparticles with scintillating properties and a diameter between 10 and 50 nanometer and a first matrix material comprises is obtained by introducing the nanoparticles into a dispersing medium to form a stable suspension. The dispersing medium is a precursor to the first matrix material, which is cured to form the first matrix material.Type: ApplicationFiled: November 7, 2016Publication date: October 25, 2018Inventors: Aneta WIATROWSKA, Herfried Karl WIECZOREK, Cornelis Reinder RONDA, Wilhelmus Cornelis KEUR, Malgorzata NACHMAN
-
Patent number: 10101471Abstract: The invention relates to a characterization apparatus (1) for characterizing scintillator material (3) especially for a PET detector. A first radiation source (2) irradiates the scintillator material with first radiation (4) having a wavelength being smaller than 450 nm. Then, a second radiation source (5) irradiates the scintillator material with pulsed second radiation (6) having a wavelength being larger than 600 nm and having a pulse duration being equal to or smaller than 50 s, wherein a detection device (9) detects third radiation (12) from the scintillator material (3) during and/or after the irradiation by the second radiation. The third radiation depends on the amount of charge carriers trapped at electronic defects of the scintillator material such that it can be used as an indicator for the amount of electronic defects and hence for characterizing the scintillator material. This characterization can be performed relatively fast and in a relatively simple way.Type: GrantFiled: July 10, 2015Date of Patent: October 16, 2018Assignees: KONINKLIJKE PHILIPS N.V., IOFFE PHYSICAL TECHNICAL INSTITUTEInventors: Herfried Karl Wieczorek, Cornelis Reinder Ronda, Hans-Aloys Wischmann, Pavel Georgiyevich Baranov, Gaik Asatrian, Danil Olegovich Tolmachev