Patents by Inventor Hermann Luyken

Hermann Luyken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200131111
    Abstract: The present invention relates to a process for preparing alkanolamines and/or ethyleneamines in the liquid phase, by reacting ethylene glycol and/or monoethanolamine with ammonia in the presence of an amination catalyst comprising Co, Ru and Sn.
    Type: Application
    Filed: May 24, 2018
    Publication date: April 30, 2020
    Inventors: Thomas HEIDEMANN, Barbara BECKER, Eva KOCH, Johann-Peter MELDER, Hermann LUYKEN
  • Publication number: 20200102262
    Abstract: The invention relates to processes for preparing alkanolamines and ethyleneamines in the liquid phase, by reacting ethylene glycol and/or monoethanolamine with ammonia in the presence of an amination catalyst comprising one or more active metals selected from Sn and the elements of groups 8, 9, 10 and 11 of the Periodic Table of the Elements, wherein the amination catalyst is obtained by reductive calcination of a catalyst precursor. The catalyst precursor here is preferably prepared by contacting a conventional or catalytic support material with one or more soluble compounds of the active metals and optionally one or more soluble compounds of added catalyst elements.
    Type: Application
    Filed: May 24, 2018
    Publication date: April 2, 2020
    Inventors: Regine Helga BEBENSEE, Thomas HEIDEMANN, Barbara BECKER, Eva KOCH, Hermann LUYKEN, Johann-Peter MELDER
  • Patent number: 9914693
    Abstract: The present invention relates to a process for preparing ethylenediamine (EDA), where the process comprises the steps a) to c). In step a), formaldehyde is reacted with hydrocyanic acid (HCN) to form formaldehyde cyanohydrin (FACH), where the hydrocyanic acid is completely free or largely free of sulfur dioxide (SO2). The FACH prepared in this way is reacted with ammonia (NH3) to form aminoacetonitrile (AAN) in step b), whereupon a hydrogenation of AAN in the presence of a catalyst to form EDA is carried out in step c).
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: March 13, 2018
    Assignee: BASF SE
    Inventors: Hermann Luyken, Stephanie Jaegli, Michael Lorenz, Gordon Brasche, Markus Jegelka, Barbara Becker, Robert Baumann, Johann-Peter Melder, Boris Buschhaus, Thomas Krug
  • Patent number: 9890113
    Abstract: A process for the continuous preparation of adiponitrile by hydrocyanation of 3-pentenenitrile is described, wherein a) 3-pentenenitrile is hydrocyanated to give a reaction output comprising adiponitrile, b) in a work-up 1, a mixture comprising cis-2-methyl-2-butenenitrile and cis-2-pentenenitrile is separated off as overhead product from the reaction output from the reactor R1 in a first distillation apparatus, c) the mixture comprising cis-2-methyl-2-butenenitrile and cis-2-pentenenitrile from step b) is continuously isomerized in the presence of aluminum oxide as catalyst in a reactor R2 to give a product mixture comprising 3-pentenenitrile, d) cis-2-methyl-2-butenenitrile is separated off as overhead product from the reaction output from the reactor R2 in a distillation apparatus in a work-up 2 and discharged.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: February 13, 2018
    Assignee: BASF SE
    Inventors: Rolf-Hartmuth Fischer, Robert Baumann, Veronika Wloka, Hermann Luyken
  • Patent number: 9828329
    Abstract: The present invention relates to a process for purifying ethylenediamine (EDA) by distillation, wherein the process comprises the steps a) and b). In step a), a mixture (G1) comprising water, EDA and N-methylethylenediamine (N-MeEDA) is fed into a distillation apparatus (D1), and the major part of the water comprised in the mixture (G1) is separated off overhead at a pressure of greater than 4.8 bara. From the bottom of (D1), the water-enriched mixture (G2) is fed into a distillation apparatus (D2) in step b). At the top of (D2), the major part of the N-MeEDA is distilled off. The stream (S3) obtained from the bottom of (D2) comprises EDA, with the components water and N-MeEDA comprised in the mixture (G1) having been largely or completely removed. Further distillation steps can optionally be carried out in order to obtain pure EDA, for example when diethylenetriamine (DETA) is additionally comprised in the mixture (G1).
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: November 28, 2017
    Assignee: BASF SE
    Inventors: Hermann Luyken, Stephanie Jaegli, Michael Lorenz, Gordon Brasche, Markus Jegelka, Barbara Becker, Robert Baumann, Johann-Peter Melder, Boris Buschhaus, Thomas Krug
  • Patent number: 9822067
    Abstract: The present invention relates to a process for purifying adiponitrile (ADN), wherein crude ADN is introduced into a rectification apparatus (R1). The rectification apparatus (R1) comprises a first side draw and preferably also a second side draw, the first side draw being disposed below the crude ADN introduction point and the optional second side draw being disposed above the crude ADN introduction point. The first side draw is used to draw off a gaseous stream comprising ADN while the optional second side draw is used to draw off undesired by-products such as 1-amino-2-cyanocyclopentene (ACCP) which are often generated in ADN production and consequently may be present in the crude ADN. The gaseous stream from the first side draw of (R1) is introduced into a second rectification apparatus (R2). (R2) is used to separate off ADN from remaining high boilers and any other by-products present, pure ADN being drawn off from (D2) as overhead product.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: November 21, 2017
    Assignee: BASF SE (Ellwanger & Baier Patentanwälte)
    Inventors: Hermann Luyken, Peter Pfab, Tim Jungkamp
  • Publication number: 20170283369
    Abstract: A process for the continuous preparation of adiponitrile by hydrocyanation of 3-pentenenitrile is described, wherein a) 3-pentenenitrile is hydrocyanated to give a reaction output comprising adiponitrile, b) in a work-up 1, a mixture comprising cis-2-methyl-2-butenenitrile and cis-2-pentenenitrile is separated off as overhead product from the reaction output from the reactor R1 in a first distillation apparatus, c) the mixture comprising cis-2-methyl-2-butenenitrile and cis-2-pentenenitrile from step b) is continuously isomerized in the presence of aluminum oxide as catalyst in a reactor R2 to give a product mixture comprising 3-pentenenitrile, d) cis-2-methyl-2-butenenitrile is separated off as overhead product from the reaction output from the reactor R2 in a distillation apparatus in a work-up 2 and discharged.
    Type: Application
    Filed: September 15, 2015
    Publication date: October 5, 2017
    Inventors: Rolf-Hartmuth FISCHER, Robert BAUMANN, Veronika WLOKA, Hermann LUYKEN
  • Publication number: 20170217874
    Abstract: The present invention relates to a process for purifying ethylenediamine (EDA) by distillation, wherein the process comprises the steps a) and b). In step a), a mixture (G1) comprising water, EDA and N-methylethylenediamine (N-MeEDA) is fed into a distillation apparatus (D1), and the major part of the water comprised in the mixture (G1) is separated off overhead at a pressure of greater than 4.8 bara. From the bottom of (D1), the water-enriched mixture (G2) is fed into a distillation apparatus (D2) in step b). At the top of (D2), the major part of the N-MeEDA is distilled off. The stream (S3) obtained from the bottom of (D2) comprises EDA, with the components water and N-MeEDA comprised in the mixture (G1) having been largely or completely removed. Further distillation steps can optionally be carried out in order to obtain pure EDA, for example when diethylenetriamine (DETA) is additionally comprised in the mixture (G1).
    Type: Application
    Filed: March 11, 2015
    Publication date: August 3, 2017
    Applicant: BASF SE
    Inventors: Hermann LUYKEN, Stephanie JAEGLI, Michael LORENZ, Gordon BRASCHE, Markus JEGELKA, Barbara BECKER, Robert BAUMANN, Johann-Peter MELDER, Boris BUSCHHAUS, Thomas KRUG
  • Publication number: 20160376227
    Abstract: The present invention relates to a process for purifying adiponitrile (ADN), wherein crude ADN is introduced into a rectification apparatus (R1). The rectification apparatus (R1) comprises a first side draw and preferably also a second side draw, the first side draw being disposed below the crude ADN introduction point and the optional second side draw being disposed above the crude ADN introduction point. The first side draw is used to draw off a gaseous stream comprising ADN while the optional second side draw is used to draw off undesired by-products such as 1-amino-2-cyanocyclopentene (ACCP) which are often generated in ADN production and consequently may be present in the crude ADN. The gaseous stream from the first side draw of (R1) is introduced into a second rectification apparatus (R2). (R2) is used to separate off ADN from remaining high boilers and any other by-products present, pure ADN being drawn off from (D2) as overhead product.
    Type: Application
    Filed: February 3, 2015
    Publication date: December 29, 2016
    Applicant: BASF SE
    Inventors: Hermann Luyken, Peter PFAB, Tim JUNGKAMP
  • Patent number: 9493405
    Abstract: A process is described for preparing 3-pentenenitrile, characterized by the following process steps: (a) isomerizing a reactant stream which comprises 2-methyl-3-butenenitrile over at least one dissolved or dispersed isomerization catalyst to give a stream 1 which comprises the at least one isomerization catalyst, 2-methyl-3-butenenitrile, 3-pentenenitrile and (Z)-2-methyl-2-butenenitrile, (b) distilling stream 1 to obtain a stream 2 as the top product which comprises 2-methyl-3-butenenitrile, 3-pentenenitrile and (Z)-2-methyl-2-butenenitrile, and a stream 3 as the bottom product which comprises the at least one isomerization catalyst, (c) distilling stream 2 to obtain a stream 4 as the top product which, compared to stream 2, is enriched in (Z)-2-methyl-2-butenenitrile, based on the sum of all pentenenitriles in stream 2, and a stream 5 as the bottom product which, compared to stream 2, is enriched in 3-pentenenitrile and 2-methyl-3-butenenitrile, based on the sum of all pentenenitriles in stream 2, (d) dis
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: November 15, 2016
    Assignee: BASF SE
    Inventors: Tim Jungkamp, Robert Baumann, Michael Bartsch, Gerd Haderlein, Hermann Luyken, Jens Scheidel, Tobias Aechtner, Peter Pfab, Petra Deckert, Wolfgang Siegel, Peter Bassler
  • Patent number: 9446960
    Abstract: Aspects of the present invention relate to an improved process for exchanging sodium ions in zeolites comprising sodium ions and rare earth metal ions for ammonium ions. For this exchange, aqueous solutions of ammonium salts, for example ammonium sulfate, ammonium nitrate or ammonium chloride, are currently being used. The resulting “ammonium zeolites” are calcined to convert them, with release of ammonia, to the H form of the zeolites suitable as a catalyst. The use of ammonium carbonate also minimizes the amount of rare earth metal ions which are leached out of the zeolites comprising rare earth metal ions.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: September 20, 2016
    Assignee: BASF SE
    Inventors: Hermann Luyken, William Todd Owens
  • Publication number: 20160168082
    Abstract: A process is described for preparing 3-pentenenitrile, characterized by the following process steps: (a) isomerizing a reactant stream which comprises 2-methyl-3-butenenitrile over at least one dissolved or dispersed isomerization catalyst to give a stream 1 which comprises the at least one isomerization catalyst, 2-methyl-3-butenenitrile, 3-pentenenitrile and (Z)-2-methyl-2-butenenitrile, (b) distilling stream 1 to obtain a stream 2 as the top product which comprises 2-methyl-3-butenenitrile, 3-pentenenitrile and (Z)-2-methyl-2-butenenitrile, and a stream 3 as the bottom product which comprises the at least one isomerization catalyst, (c) distilling stream 2 to obtain a stream 4 as the top product which, compared to stream 2, is enriched in (Z)-2-methyl-2-butenenitrile, based on the sum of all pentenenitriles in stream 2, and a stream 5 as the bottom product which, compared to stream 2, is enriched in 3-pentenenitrile and 2-methyl-3-butenenitrile, based on the sum of all pentenenitriles in stream 2, (d) dis
    Type: Application
    Filed: November 13, 2015
    Publication date: June 16, 2016
    Inventors: Tim Jungkamp, Robert BAUMANN, Michael BARTSCH, Gerd HADERLEIN, Hermann LUYKEN, Jens SCHEIDEL, Tobias AECHTNER, Peter PFAB, Petra DECKERT, Wolfgang SIEGEL, Peter BASSLER
  • Patent number: 9249029
    Abstract: The invention relates to an improved process for vaporizing organic compounds and the further conversion thereof.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: February 2, 2016
    Assignee: BASF SE
    Inventors: Ralf Boehling, Michael Schipper, Stefan Birnbach, Peter Petersen, Achim Gritsch, Alois Wellisch, Hermann Luyken, Albert Steiner, Peter Zehner
  • Publication number: 20160009633
    Abstract: The present invention relates to a process for preparing ethylenediamine (EDA), where the process comprises the steps a) to c). In step a), formaldehyde is reacted with hydrocyanic acid (HCN) to form formaldehyde cyanohydrin (FACH), where the hydrocyanic acid is completely free or largely free of sulfur dioxide (SO2). The FACH prepared in this way is reacted with ammonia (NH3) to form aminoacetonitrile (AAN) in step b), whereupon a hydrogenation of AAN in the presence of a catalyst to form EDA is carried out in step c).
    Type: Application
    Filed: February 12, 2014
    Publication date: January 14, 2016
    Inventors: Hermann LUYKEN, Stephanie JAEGLI, Michael LORENZ, Gordon BRASCHE, Markus JEGELKA, Barbara BECKER, Robert BAUMANN, Johann-Peter MELDER, Boris BUSCHHAUS, Thomas KRUG
  • Patent number: 9096497
    Abstract: A process for preparing EDDN and/or EDMN by conversion of FA, HCN and EDA, the reaction being effected in the presence of water, and, after the conversion, water being depleted from the reaction mixture in a distillation column, which comprises performing the distillation in the presence of an organic solvent which has a boiling point between water and EDDN and/or EDMN at the distillation pressure existing in the column or which forms a low-boiling azeotrope with water.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: August 4, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 9012638
    Abstract: A process for reacting formaldehyde cyanohydrin (FACH) with ethylenediamine (EDA) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 8952156
    Abstract: A process is disclosed for separating the output from the reaction of EDDN or EDMN with hydrogen in the presence of THF, a catalyst, TETA or DETA, water, and optionally organic compounds having higher and lower boiling points than TETA or DETA. Hydrogen is removed, and the output is supplied to a distillation column DK1 in which an azeotrope, optionally comprising organic compounds with a boiling point lower than TETA or DETA, is removed from the top. A product comprising TETA or DETA is removed from the bottom and passed into a distillation column DK2, removing THF. A stream comprising TETA or DETA passes from the bottom of DK2. The DK1 azeotrope is condensed. Phase separation is induced by the addition of an organic solvent essentially immiscible with water, and the mixture is separated. The organic phase is recycled into DK1 and the water phase is discharged.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 10, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 8946459
    Abstract: A process for reacting ethylenediamine-formaldehyde adduct (EDFA) and/or ethylene-diamine-monoformaldehyde adduct (EDMFA) with hydrogen cyanide (HCN) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 3, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 8772527
    Abstract: The present invention relates to an improved process for batchwise or continuous isomerization of cis-2-pentenenitrile to 3-pentenenitriles in the presence of 1,4-diazabicyclo[2.2.2]octane as catalyst.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: July 8, 2014
    Assignee: BASF SE
    Inventors: Rolf-Hartmuth Fischer, Alfred Oftring, Robert Baumann, Hermann Luyken
  • Publication number: 20130289299
    Abstract: The present invention relates to an improved process for batchwise or continuous isomerization of cis-2-pentenenitrile to 3-pentenenitriles in the presence of 1,4-diazabicyclo[2.2.2]octane as catalyst.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 31, 2013
    Applicant: BASF SE
    Inventors: Rolf-Hartmuth Fischer, Alfred Oftring, Robert Baumann, Hermann Luyken