Patents by Inventor Hideshi Iki

Hideshi Iki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080308459
    Abstract: A process of the present invention for producing a hydrotreated gas oil has a step for obtaining a product oil having a total aromatic content of 3% by volume or less by hydrogenating a hydrotreated oil including 95% by volume or more of fraction having a boiling point range of 150-380° C., a sulfur content of 2-15 ppm by mass, a total aromatic content of 10-25% by volume, and a naphthene of 20-60% by volume in the presence of a hydrogenation catalyst; and a step for obtaining, by hydrogenating the above-described product oil in the presence of a hydrogenation catalyst containing a crystalline molecular sieve component, a product oil satisfying the conditions that the content of petroleum fraction having a boiling point range of lower than 150° C. is 16% by volume or less, and the sum of the total aromatic content and the total naphthene content is 80% or less relative to the sum of these in the hydrotreated oil.
    Type: Application
    Filed: September 30, 2005
    Publication date: December 18, 2008
    Inventors: Hideshi Iki, Yukihiro Sugiura, Yuichi Tanaka, Hirofumi Konno
  • Patent number: 7429550
    Abstract: A hydrogenation catalyst for a hydrocarbon oil, includes an inorganic porous support composed of at least the oxides of aluminum, phosphorus, and silicon, and supporting at least one active metal selected from the metals of Group 8 of the periodic table, at least one active metal selected from the metals of Group 6 of the periodic table, and phosphorus, the phosphorus chemical shift value of the inorganic support determined by 31P-CPMAS-NMR having the peak within the range of 0 to ?20 ppm. The catalyst can achieve an extremely high level of hydrogenation wherein the hydrocarbon is decreased in sulfur content to 10 ppm by mass or less and in nitrogen content to 3 ppm by mass or less.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 30, 2008
    Assignee: Nippon Oil Corporation
    Inventors: Hideshi Iki, Kazuaki Hayasaka, Kazuo Fukazawa
  • Publication number: 20070175797
    Abstract: The present invention provides a hydrodesulfurization that can attain an extremely high depth of desulfurization to a sulfur content of 10 ppm by mass and maintain such a high desulfurization activity for a long period of time. The catalyst comprises an inorganic porous support containing alumina and phosphorus, at least one active metal selected from the metals of Group 8 of the periodic table, and at least one metal selected from the metals of Group 6A of the periodic table, the Group 8 metal and the Group 6A metal being contained in a molar ratio defined by (oxide of the Group 8 metal)/(oxide of the Group 6A metal) ranging from 0.055 to 0.150, and the content of the Group 6A metal in terms of oxide being in the range of 30 to 40 percent by mass based on the mass of the catalyst.
    Type: Application
    Filed: January 23, 2007
    Publication date: August 2, 2007
    Applicant: NIPPON OIL CORPORATION
    Inventors: Hideshi Iki, Kazuaki Hayasaka, Shinya Takahashi
  • Publication number: 20070084753
    Abstract: A hydrogenation catalyst for a hydrocarbon oil, includes an inorganic porous support composed of at least the oxides of aluminum, phosphorus, and silicon, and supporting at least one active metal selected from the metals of Group 8 of the periodic table, at least one active metal selected from the metals of Group 6 of the periodic table, and phosphorus, the phosphorus chemical shift value of the inorganic support determined by 31P-CPMAS-NMR having the peak within the range of 0 to ?20 ppm. The catalyst can achieve an extremely high level of hydrogenation wherein the hydrocarbon is decreased in sulfur content to 10 ppm by mass or less and in nitrogen content to 3 ppm by mass or less.
    Type: Application
    Filed: December 6, 2006
    Publication date: April 19, 2007
    Applicant: NIPPON OIL CORPORATION
    Inventors: Hideshi IKI, Kazuaki HAYASAKA, Kazuo FUKAZAWA
  • Publication number: 20060260983
    Abstract: The gas oil fraction hydrotreatment process of the invention is characterized by using a hydrorefined petroleum-based hydrocarbon oil with a sulfur content of 5-15 ppm by mass, a total aromatic content of 10-25% by volume and a boiling point range of 150-380° C. as the feed oil and subjecting the feed oil to hydrotreatment in the presence of a hydrogenation catalyst to obtain an ultralow sulfur and low aromatic gas oil fraction having a sulfur content of not greater than 1 ppm by mass and a total aromatic content of not greater than 1% by volume. This hydrotreatment process allows production of a “zero sulfur” and “zero aromatic” gas oil fraction in an efficient and reliable manner without provision of special operating conditions or equipment investment.
    Type: Application
    Filed: March 5, 2004
    Publication date: November 23, 2006
    Inventors: Hideshi Iki, Yukihiro Sugiura, Yuichi Tanaka
  • Publication number: 20060249429
    Abstract: The present invention provides a hydrodesulfurization that can attain an extremely high depth of desulfurization to a sulfur content of 10 ppm by mass, exert high denitrogenation activity, and has high nitrogen resisting properties to nitrogen compounds which are substances inhibiting desulfurization reaction. The catalyst is suitable for hydrodesulfurizing petroleum hydrocarbons and characterized in that an inorganic porous support composed of mainly alumina contains, as active metals, at least one metal selected from the metals of Group 8 of the periodic table and at least one metal selected from the metals of Group 6A of the periodic table in a molar ratio defined by [oxide of the Group 8 metal]/[oxide of the Group 6A metal] ranging from 0.105 to 0.265 and the content of the Group 6A metal in terms of oxide is in the range of 20 to 30 percent by mass based on the mass of the catalyst.
    Type: Application
    Filed: July 7, 2006
    Publication date: November 9, 2006
    Applicant: NIPPON OIL CORPORATION
    Inventors: Hideshi IKI, Kazuaki HAYASAKA, Shinya TAKAHASHI, Kazuo FUKAZAWA
  • Publication number: 20060211900
    Abstract: The gas oil fraction hydrotreatment process of the invention is characterized by using a gas oil fraction with a sulfur content of 0.8-2% by mass and a total aromatic content of 20-35% by volume as the feed oil and subjecting the feed oil to hydrotreatment in the presence of a hydrogenation catalyst comprising at least one metal from among Group 6A metals and at least one metal from among Group 8 metals as active metals, and under reaction conditions with a reaction temperature of 330-390° C., a hydrogen partial pressure of 12-20 MPa and a liquid hourly space velocity of 0.1-1 h?1, to obtain an ultralow sulfur and low- aromatic gas oil fraction having a sulfur content of not greater than 1 ppm by mass and a total aromatic content of not greater than 1% by volume. This hydrotreatment process allows production of a “zero sulfur” and “zero aromatic” gas oil fraction in an efficient and reliable manner without provision of special operating conditions or equipment investment.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 21, 2006
    Inventors: Hideshi Iki, Yukihiro Sugiura, Yuichi Tanaka, Shinya Takahashi
  • Publication number: 20050023192
    Abstract: A hydrodesulfurization catalyst used for hydrodesulfurization of catalytically cracked gasoline comprises a support composed mainly of alumina modified with an oxide of at least one metal selected from the group consisting of iron, chromium, cobalt, nickel, copper, zinc, yttrium, scandium and lanthanoid-based metals, with at least one metal selected from the group consisting of Group 6A and Group 8 metals loaded as an active metal on the support. Hydrogenation of olefins generated as by-products during hydrodesulfurization of the catalytically cracked gasoline fraction, as an important constituent base of gasoline, can be adequately inhibited to maintain the octane number, while sufficiently reducing the sulfur content of the hydrodesulfurized catalytically cracked gasoline fraction.
    Type: Application
    Filed: July 13, 2004
    Publication date: February 3, 2005
    Inventors: Hideshi Iki, Shigeto Hatanaka, Eitaro Morita, Shinya Takahashi
  • Patent number: 6251263
    Abstract: A hydrogenation region in a fixed bed reactor is defined with a first, a second and a third hydrogenation zones sequentially from the entrance of the reactor, and a sulfur-containing diesel gas oil feedstock is passed through the first, second and third hydrogenation zones sequentially under conditions of a temperature of 320 to 420° C., a pressure of 5 to 15 MPa, an LHSV of 0.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: June 26, 2001
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Hideshi Iki
  • Patent number: 6251262
    Abstract: Diesel gas oil feedstock with 1-3 wt % sulfur can be hydrodesulfurized to a diesel gas oil with 0.05 wt % or less sulfur and a Saybolt color of +20 or higher, by defining a hydrogenation region in a fixed bed reactor with a first hydrogenation zone for dibenzothiophene, 1-, 2- and 3-methyldibenzothiophenes, a second hydrogenation zone for 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene and a third hydrogenation zone for thiols, sulfides and other sulfur-containing substances.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: June 26, 2001
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Hideshi Iki
  • Patent number: 6217748
    Abstract: A process for hydrodesulfurization of a sulfur-containing petroleum hydrocarbon diesel gas oil comprising; hydrodesulfurizing a sulfur-containing petroleum hydrocarbon diesel gas oil feedstock, separating the hydrodesulfurized diesel gas oil feedstock into light and heavy fractions by distillation, hydrodesulfurizing further the separated heavy fraction, and mixing the further hydrodesulfurized heavy fraction and the separated light fraction into the hydrocarbon diesel gas oil.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: April 17, 2001
    Assignee: Nippon Mitsubishi Oil Corp.
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Hideshi Iki