Patents by Inventor Hideyuki Hosokawa

Hideyuki Hosokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200159075
    Abstract: According to one embodiment, a liquid crystal display device includes a first area, second area, liquid crystal layer, and a plurality of pixels. Each subpixel includes an opening area including a first opening area and a second opening area. The pixels include a first pixel positioned in the first area and a second pixel positioned over a boundary of the first area and the second area. The opening area of the second pixel is smaller than the opening area of the first pixel when opening areas of subpixels of same color are compared. An each imaginary line showing the boundary of the first opening area and the second opening area is a same straight line.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: Japan Display Inc.
    Inventors: Masato Nakamura, Daichi Hosokawa, Yuki Kuramoto, Hideyuki Takahashi
  • Patent number: 10571755
    Abstract: According to one embodiment, a liquid crystal display device includes a first area, second area, liquid crystal layer, and a plurality of pixels. Each subpixel includes an opening area including a first opening area and a second opening area. The pixels include a first pixel positioned in the first area and a second pixel positioned over a boundary of the first area and the second area. The opening area of the second pixel is smaller than the opening area of the first pixel when opening areas of subpixels of same color are compared. An each imaginary line showing the boundary of the first opening area and the second opening area is a same straight line.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: February 25, 2020
    Assignee: Japan Display Inc.
    Inventors: Masato Nakamura, Daichi Hosokawa, Yuki Kuramoto, Hideyuki Takahashi
  • Publication number: 20180080115
    Abstract: There is provided an adhesion restraint method of a radionuclide to a carbon steel material of an atomic energy plant, in which an adhesion restraint effect of the radionuclide to the carbon steel material can continue for a longer term. A film forming apparatus is connected to a carbon steel purification system pipe of a BWR plant. A nickel formate aqueous solution and hydrazine are injected into a circulation pipe of the film forming apparatus. An aqueous solution including nickel formate and hydrazine is guided into a purification system pipe subjected to chemical decontamination, and a nickel metal film is formed on an inner surface of the pipe. A platinum ion aqueous solution and hydrazine are injected into the circulation pipe, and an aqueous solution including a platinum ion and hydrazine is supplied to the purification system pipe so as to adhere platinum to the surface of a nickel metal film. The film forming apparatus is detached from the purification system pipe, and the BWR plant is started.
    Type: Application
    Filed: August 7, 2017
    Publication date: March 22, 2018
    Inventors: Tsuyoshi ITOU, Hideyuki HOSOKAWA, Nobuyuki OOTA, Satoshi OOUCHI, Shintarou YANAGISAWA, Mizuho TSUYUKI, Makoto NAGASE, Kazushige ISHIDA, Toru KAWASAKI
  • Patent number: 9299463
    Abstract: A noble metal injection apparatus is connected to a piping of a nuclear plant at the time of stop of the nuclear plant before start of the nuclear plant. In chemical decontamination, oxidation decontamination agent decomposition, and reduction decontamination on an inner surface of the pipe system are executed. After reduction decontamination, a part of an oxalic acid included in a reduction decontamination solution is decomposed and platinum is injected into the reduction decontamination solution of pH 3.5 or higher. When the platinum concentration becomes a preset concentration, a reduction agent is injected and the reduction decontamination solution including the platinum and reduction agent is brought into contact with the inner surface of the piping. The platinum is deposited on the inner surface of the piping. The injection of the platinum and reduction agent is stopped and the platinum and reduction agent are decomposed.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: March 29, 2016
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Tsuyoshi Ito, Hideyuki Hosokawa, Makoto Nagase, Yoichi Wada, Kazushige Ishida, Motohiro Aizawa
  • Patent number: 9230699
    Abstract: A circulation pipe of a chemical decontamination apparatus including a malonic acid injection apparatus and an oxalic acid injection apparatus is connected to a purification system pipe, which is made of carbon steel, of a boiling water nuclear power plant. A malonic acid aqueous solution is injected from the malonic acid injection apparatus into the circulation pipe. An oxalic acid aqueous solution is injected from the oxalic acid injection apparatus into the circulation pipe. A reduction decontaminating solution including a malonic acid of 5200 ppm and an oxalic acid within a range of 50 to 400 ppm is supplied into the purification system pipe through the circulation pipe. Reduction decontamination for an inner surface of the purification system pipe is executed. After the reduction decontamination for the purification system pipe finishes, the malonic acid and oxalic acid included in the solution are decomposed and furthermore, the solution is purified.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: January 5, 2016
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Kazushige Ishida, Hideyuki Hosokawa, Motohiro Aizawa
  • Publication number: 20150073198
    Abstract: A circulation pipe of a chemical decontamination apparatus including a malonic acid injection apparatus and an oxalic acid injection apparatus is connected to a purification system pipe, which is made of carbon steel, of a boiling water nuclear power plant. A malonic acid aqueous solution is injected from the malonic acid injection apparatus into the circulation pipe. An oxalic acid aqueous solution is injected from the oxalic acid injection apparatus into the circulation pipe. A reduction decontaminating solution including a malonic acid of 5200 ppm and an oxalic acid within a range of 50 to 400 ppm is supplied into the purification system pipe through the circulation pipe. Reduction decontamination for an inner surface of the purification system pipe is executed. After the reduction decontamination for the purification system pipe finishes, the malonic acid and oxalic acid included in the solution are decomposed and furthermore, the solution is purified.
    Type: Application
    Filed: August 4, 2014
    Publication date: March 12, 2015
    Inventors: Kazushige ISHIDA, Hideyuki HOSOKAWA, Motohiro AIZAWA
  • Patent number: 8821973
    Abstract: Both ends of a circulation pipe of a film formation apparatus are connected to a piping of a BWR plant. A chemical including chromium ions and formic acid is injected into a film formation solution flowing in the circulation pipe heated to a temperature within a range from 60° C. to 100° C. Furthermore, a chemical including iron (II) ions and formic acid, hydrogen peroxide, and hydrazine are injected into the circulation pipe. Due to the injection of these chemicals, a film formation solution of pH 7.0 including iron (II) ions, chromium ions, formic acid, hydrogen peroxide, and hydrazine is generated in the circulation pipe. This film formation solution includes hydrazine of, for example, 1000 ppm. The film formation solution is supplied to the piping, thus, a Fe3—xCrxO4 film (here, 0<X?0.1) is formed on the inner surface of the piping. The above method of forming the ferrite film on a structural member (for example, the piping) can be shortened time required to form the ferrite film.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: September 2, 2014
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Tsuyoshi Ito, Hideyuki Hosokawa, Yukio Hirama, Makoto Nagase
  • Patent number: 8652272
    Abstract: A bath containing nickel ions and formic acid is injected into a film-forming aqueous solution flowing in a circulation pipe connected to a feed water pipe made of carbon steel in a BWR plant. This solution is supplied into the pipe through the circulation pipe, and a nickel metal film is formed on an inner surface of the pipe. After the film is formed, a film-forming aqueous solution containing iron (II) ions, formic acid, nickel ions, hydrogen peroxide, and hydrazine is supplied to the pipe. A nickel ferrite film is formed on the surface of the nickel metal film in the pipe. The nickel ferrite film comes into contact with water containing dissolved oxygen at or above 150° C. to transform the nickel metal film into a nickel ferrite film. A thick nickel ferrite film is formed on the inner surface of the feed water pipe.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: February 18, 2014
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Tsuyoshi Ito, Hideyuki Hosokawa, Yukio Hirama, Motoaki Sakashita, Makoto Nagase
  • Patent number: 8652271
    Abstract: A bath containing nickel ions and formic acid is injected into a film-forming aqueous solution flowing in a circulation pipe connected to feed water pipe made of carbon steel in a BWR plant. This film-forming aqueous solution is supplied into the feed water pipe through the circulation pipe, and then, a nickel metal film is formed on an inner surface of the feed water pipe. After the nickel metal film is formed, a film-forming aqueous solution containing iron (II) ions, formic acid, nickel ions, hydrogen peroxide, and hydrazine is supplied to the feed water pipe. A nickel ferrite film is formed on the surface of the nickel metal film in the feed water pipe. Then, the nickel ferrite film is come into contact with water containing dissolved-oxygen at 150° C. or above to transform the nickel metal film into a nickel ferrite film. A thick nickel ferrite film is formed on the inner surface of the feed water pipe. Corrosion of the carbon steel member composing the plant can further reduce.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: February 18, 2014
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Tsuyoshi Ito, Hideyuki Hosokawa, Yukio Hirama, Motoaki Sakashita, Makoto Nagase
  • Publication number: 20140037037
    Abstract: A noble metal injection apparatus is connected to a piping of a nuclear plant at the time of stop of the nuclear plant before start of the nuclear plant. In chemical decontamination, oxidation decontamination agent decomposition, and reduction decontamination on an inner surface of the pipe system are executed. After reduction decontamination, a part of an oxalic acid included in a reduction decontamination solution is decomposed and platinum is injected into the reduction decontamination solution of pH 3.5 or higher. When the platinum concentration becomes a preset concentration, a reduction agent is injected and the reduction decontamination solution including the platinum and reduction agent is brought into contact with the inner surface of the piping. The platinum is deposited on the inner surface of the piping. The injection of the platinum and reduction agent is stopped and the platinum and reduction agent are decomposed.
    Type: Application
    Filed: November 16, 2012
    Publication date: February 6, 2014
    Applicant: HITACHI-GE NUCLEAR ENERGY, LTD.
    Inventors: Tsuyoshi ITO, Hideyuki HOSOKAWA, Makoto NAGASE, Yoichi WADA, Kazushige ISHIDA, Motohiro AIZAWA
  • Patent number: 8494107
    Abstract: A formic acid aqueous solution that contains Fe (II) ions is produced by dissolving metal iron in a formic acid aqueous solution. Nitrogen is supplied from a nitrogen supply device to a chemical liquid tank and then discharged from a discharge line to reduce the dissolved oxygen concentration in the aqueous solution. The chemical liquid tank is filled with the formic acid aqueous solution sealed with nitrogen, and is transferred from a factory to a nuclear reactor building designated as radiation-controlled areas. Inside the nuclear reactor building, the chemical liquid tank is installed in a film deposition apparatus connected to a reactor water recirculation pipeline. The formic acid aqueous is supplied from the chemical liquid tank to the inside of the reactor water recirculation pipeline, and then a ferrite film is formed on the inner surface of the reactor water recirculation pipeline.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 23, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota
  • Patent number: 8457270
    Abstract: A method of suppressing deposition of radionuclides on components of a nuclear power plant comprises forming a ferrite film by contacting a first chemical including iron (II) ions, a second chemical for oxidizing the iron (II) ions to iron (III) ions, and a third chemical for adjusting the pH of a processing solution containing a mixture of the first and second chemicals to be 5.5 to 9.0 with the metal member surface in a time period from a finishing stage in decontamination step of removing contaminants formed on the surface of metal member composing the nuclear power plant, and suppressing deposition of radionuclides on the metal member by the ferrite film.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: June 4, 2013
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Kazushige Ishida, Yoichi Wada, Naoshi Usui, Motohiro Aizawa, Motomasa Fuse
  • Patent number: 8259894
    Abstract: A formic acid aqueous solution that contains Fe (II) ions is produced by dissolving metal iron in a formic acid aqueous solution. Nitrogen is supplied from a nitrogen supply device to a chemical liquid tank and then discharged from a discharge line to reduce the dissolved oxygen concentration in the aqueous solution. The chemical liquid tank is filled with the formic acid aqueous solution sealed with nitrogen, and transferred from a factory to a nuclear reactor building designated as radiation-controlled areas. Inside the nuclear reactor building, the chemical liquid tank is installed in a film deposition apparatus connected to a reactor water recirculation pipeline. The formic acid aqueous is supplied from the chemical liquid tank to the inside of the reactor water recirculation pipeline, and then a ferrite film is formed on the inner surface of the reactor water recirculation pipeline.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: September 4, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota
  • Publication number: 20110277304
    Abstract: Both ends of a circulation pipe of a film formation apparatus are connected to a piping of a BWR plant. A chemical including chromium ions and formic acid is injected into a film formation solution flowing in the circulation pipe heated to a temperature within a range from 60° C. to 100° C. Furthermore, a chemical including iron (II) ions and formic acid, hydrogen peroxide, and hydrazine are injected into the circulation pipe. Due to the injection of these chemicals, a film formation solution of pH 7.0 including iron (II) ions, chromium ions, formic acid, hydrogen peroxide, and hydrazine is generated in the circulation pipe. This film formation solution includes hydrazine of, for example, 1000 ppm. The film formation solution is supplied to the piping, thus, a Fe3—xCrxO4 film (here, 0<X?0.1) is formed on the inner surface of the piping. The above method of forming the ferrite film on a structural member (for example, the piping) can be shortened time required to form the ferrite film.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 17, 2011
    Applicant: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Tsuyoshi ITO, Hideyuki Hosokawa, Yukio Hirama, Makoto Nagase
  • Publication number: 20110176649
    Abstract: A method of suppressing deposition of radionuclides on components of a nuclear power plant comprises forming a ferrite film by contacting a first chemical including iron (II) ions, a second chemical for oxidizing the iron (II) ions to iron (III) ions, and a third chemical for adjusting the pH of a processing solution containing a mixture of the first and second chemicals to be 5.5 to 9.0 with the metal member surface in a time period from a finishing stage in decontamination step of removing contaminants formed on the surface of metal member composing the nuclear power plant, and suppressing deposition of radionuclides on the metal member by the ferrite film.
    Type: Application
    Filed: January 4, 2011
    Publication date: July 21, 2011
    Applicant: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hideyuki HOSOKAWA, Makoto Nagase, Kazushige Ishida, Yoichi Wada, Naoshi Usui, Motohiro Aizawa, Motomasa Fuse
  • Patent number: 7907695
    Abstract: A natural circulation boiling water reactor provides to a chimney with a plurality of tubes. That is to say, each of the plurality of tubes partitions the coolant flow path above a core. Thus, unlike the conventional natural circulation boiling water reactor providing the flow path partition wall grid in which the plate members are made integral by welding and coolant flow paths are partitioned, the chimney of the natural circulation boiling water reactor can reduce the number of welded portions because the edges of the four corners of each flow path do not need to be welded. The natural circulation boiling water reactor can avoid removal as a single unit, as in the case of the flow path partition wall grid in the conventional natural circulation boiling water reactor, by detaching each tube. The chimney can be easily detached from the reactor pressure vessel.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: March 15, 2011
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Atsushi Watanabe, Yoichi Wada, Makoto Nagase, Kazushige Ishida, Hideyuki Hosokawa, Fumihito Hirokawa, Masaaki Tsubaki, Shiro Takahashi
  • Patent number: 7889828
    Abstract: A method of suppressing deposition of radionuclides on components of a nuclear power plant comprises forming a ferrite film by contacting a first chemical including iron (II) ions, a second chemical for oxidizing the iron (II) ions to iron (III) ions, and a third chemical for adjusting the pH of a processing solution containing a mixture of the first and second chemicals to be 5.5 to 9.0 with the metal member surface in a time period from a finishing stage in decontamination step of removing contaminants formed on the surface of metal member composing the nuclear power plant, and suppressing deposition of radionuclides on the metal member by the ferrite film.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: February 15, 2011
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Kazushige Ishida, Yoichi Wada, Naoshi Usui, Motohiro Aizawa, Motomasa Fuse
  • Publication number: 20110030850
    Abstract: A bath containing nickel ions and formic acid is injected into a film-forming aqueous solution flowing in a circulation pipe connected to feed water pipe made of carbon steel in a BWR plant. This film-forming aqueous solution is supplied into the feed water pipe through the circulation pipe, and then, a nickel metal film is formed on an inner surface of the feed water pipe. After the nickel metal film is formed, a film-forming aqueous solution containing iron (II) ions, formic acid, nickel ions, hydrogen peroxide, and hydrazine is supplied to the feed water pipe. A nickel ferrite film is formed on the surface of the nickel metal film in the feed water pipe. Then, the nickel ferrite film is come into contact with water containing dissolved-oxygen at 150° C. or above to transform the nickel metal film into a nickel ferrite film. A thick nickel ferrite film is formed on the inner surface of the feed water pipe. Corrosion of the carbon steel member composing the plant can further reduce.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 10, 2011
    Applicant: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Tsuyoshi ITO, Hideyuki Hosokawa, Yukio Hirama, Motoaki Sakashita, Makoto Nagase
  • Patent number: 7844024
    Abstract: A method of suppressing deposition of radionuclides on components of a nuclear power plant comprises forming a ferrite film by contacting a first chemical including iron (II) ions, a second chemical for oxidizing the iron (II) ions to iron (III) ions, and a third chemical for adjusting the pH of a processing solution containing a mixture of the first and second chemicals to be 5.5 to 9.0 with the metal member surface in a time period from a finishing stage in decontamination step of removing contaminants formed on the surface of metal member composing the nuclear power plant, and suppressing deposition of radionuclides on the metal member by the ferrite film.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: November 30, 2010
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Kazushige Ishida, Yoichi Wada, Naoshi Usui, Motohiro Aizawa, Motomasa Fuse
  • Patent number: 7811392
    Abstract: It is an object of the present invention to efficiently suppress radionuclide deposition on a reactor component of nuclear power plant. Radionuclide deposition on the surface of a metallic reactor component of nuclear power plant is suppressed by forming a ferrite film on the component, wherein the film is formed, after decontamination for removing radionuclides contaminants from the component surface is completed and before the plant is started up, by contacting a treatment solution which mixes a first agent containing the iron (II) ions, a second agent for oxidizing the iron (II) ions into the iron (III) ions and a third agent for adjusting pH level of a solution to 5.5 to 9.0 in this order with the reactor component surface.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: October 12, 2010
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Kazushige Ishida, Youichi Wada, Naoshi Usui, Motohiro Aizawa, Motomasa Fuse