Patents by Inventor Hideyuki Miyake

Hideyuki Miyake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11806816
    Abstract: An aluminum brazing sheet for flux-free brazing having a multilayer structure of two or more layers including at least one core material layer and one brazing material layer, wherein the brazing material layer is positioned on one or both sides of the core material layer and on an outermost surface of the brazing sheet. The brazing material layer is made of an Al—Si—Mg—X brazing material containing: in mass%, 0.05 to 2.0% of Mg, and 2.0 to 14.0% of Si, and further containing one or more of 0.01 to 0.3% of Bi, Ga, Sn, In and Pb, a total amount of Bi, Ga, Sn, In and Pb being 0.5% or less. X indicates one or more of Bi, Ga, Sn, In and Pb.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: November 7, 2023
    Assignee: MA Aluminum Corporation
    Inventors: Michihide Yoshino, Hideyuki Miyake, Hajime Chiba
  • Patent number: 11759893
    Abstract: An aluminum alloy for flux-free brazing provided for brazing performed via an Al—Si-based brazing material without a flux in a non-oxidizing atmosphere without depressurization, includes: by mass %, 0.01% to 2.0% of Mg; and 0.005% to 1.5% of Bi, wherein in the aluminum alloy, there are more than 10 Mg—Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter per 10,000-?m2 visual field and there are less than 2 Mg—Bi-based compounds having a diameter of 5.0 ?m or more per 10,000-?m2 visual field in a cross section parallel to a rolling direction, and in the aluminum alloy, there are less than 5 Bi particles having a diameter of 5.0 ?m or more in terms of equivalent circle diameter per 10,000-?m2 visual field in the cross section parallel to the rolling direction.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: September 19, 2023
    Assignee: MA Aluminum Corporation
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo
  • Patent number: 11722511
    Abstract: According to one embodiment, an information processing device ranks one or more security measures technologies to be ranked. The information processing device includes processing circuitry configured to operate as an influence information obtaining unit, a requirements information obtaining unit and a ranking unit. The influence information obtaining unit obtains influence information indicating correspondence between the one or more security measures technologies and an influence on a system when each of the one or more security measures technologies is introduced into the system. The requirements information obtaining unit obtains requirements information indicating system requirements of the system. The ranking unit ranks the one or more security measures technologies based on a degree of satisfaction of the system requirements indicated in the requirements information, using the requirements information and the influence information.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: August 8, 2023
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Kanai, Yurie Shinke, Hideyuki Miyake
  • Publication number: 20230193431
    Abstract: The aluminum alloy clad material includes a core material and sacrificial materials disposed on both surfaces of the core material, the composition of the core material contains, by mass %, Mn: 0.7% to 1.8%, Si: 0.3% to 1.3%, Fe: 0.05% to 0.7% and Zn: 0.5% to 3.0% with a remainder consisting of Al and inevitable impurities, the composition of the sacrificial material contains, by mass %, Mn: 0.005% to 0.7%, Fe: 0.05% to 0.3% and Zn: 1.0% to 4.0% with a remainder consisting of Al and inevitable impurities, an amount of Zn in the sacrificial material is larger than an amount of Zn in the core material by 0.2% or more, and the potential of the core material after a brazing heat treatment is within a range of ?700 to ?870 mV.
    Type: Application
    Filed: June 21, 2021
    Publication date: June 22, 2023
    Applicants: MA Aluminum Corporation, DENSO CORPORATION
    Inventors: Yoshiki MORI, Michihide YOSHINO, Masakazu EDO, Shohei IWAO, Hideyuki MIYAKE, Yousuke UCHIDA, Nobuhiro HONMA, Shogo YAMADA
  • Publication number: 20230125002
    Abstract: An aluminum brazing sheet for flux-free brazing having a multilayer structure of two or more layers including at least one core material layer and one brazing material layer, wherein the brazing material layer is positioned on one or both sides of the core material layer and on an outermost surface of the brazing sheet. The brazing material layer is made of an Al—Si—Mg—X brazing material containing: in mass%, 0.05 to 2.0% of Mg, and 2.0 to 14.0% of Si, and further containing one or more of 0.01 to 0.3% of Bi, Ga, Sn, In and Pb, a total amount of Bi, Ga, Sn, In and Pb being 0.5% or less. X indicates one or more of Bi, Ga, Sn, In and Pb.
    Type: Application
    Filed: February 15, 2021
    Publication date: April 20, 2023
    Applicant: MA Aluminum Corporation
    Inventors: Michihide YOSHINO, Hideyuki MIYAKE, Hajime CHIBA
  • Publication number: 20220179966
    Abstract: According to one embodiment, an information processing device includes an influence information obtaining unit, a requirements information obtaining unit, and a ranking unit. The influence information obtaining unit obtains influence information indicating a correspondence between one or more security measures technologies and an influence on a system when each of the one or more security measures technologies is introduced into the system. The requirements information obtaining unit obtains common constraint condition information indicating system requirements of the system. The ranking unit classifies the one or more security measures technologies into a security measures technology satisfying a common constraint condition indicating the system requirements and a security measures technology not satisfying the common constraint condition, based on the common constraint condition information and the influence information, and ranks the security measures technology satisfying the common constraint condition.
    Type: Application
    Filed: October 21, 2021
    Publication date: June 9, 2022
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yurie SHINKE, Jun KANAI, Hideyuki MIYAKE
  • Publication number: 20220072665
    Abstract: An aluminum brazing sheet has a multilayer structure of two or more layers of at least a core material and a brazing material, wherein an Al—Si—Mg—Bi-based brazing material containing, by mass %, 0.01% to 2.0% of Mg, 1.5% to 14.0% of Si, and 0.005% to 1.5% of Bi is clad on one surface or both surfaces of the core material to be located at an outermost surface of the aluminum brazing sheet, in the Al—Si—Mg—Bi based brazing material, there are more than 10 Mg—Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m when observed in a surface layer plane direction and there are less than 2 Mg—Bi-based compounds having a diameter of 5.0 ?m or more, and in the brazing material, there are less than 5 Bi particles having a diameter of 5.0 ?m or more when observed in the surface layer plane direction.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 10, 2022
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO
  • Publication number: 20220063024
    Abstract: An aluminum alloy for flux-free brazing provided for brazing performed via an Al-Si-based brazing material without a flux in a non-oxidizing atmosphere without depressurization, includes: by mass %, 0.01% to 2.0% of Mg; and 0.005% to 1.5% of Bi, wherein in the aluminum alloy, there are more than 10 Mg-Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter per 10,000-?m2 visual field and there are less than 2 Mg-Bi-based compounds having a diameter of 5.0 ?m or more per 10,000-?m2 visual field in a cross section parallel to a rolling direction, and in the aluminum alloy, there are less than 5 Bi particles having a diameter of 5.0 ?m or more in terms of equivalent circle diameter per 10,000-?m2 visual field in the cross section parallel to the rolling direction.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 3, 2022
    Applicant: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO
  • Patent number: 11229978
    Abstract: A brazing sheet for flux-free brazing has an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 2 to 13% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 4 to 13% Si and 0.1 to 5.0% Mg in mass %, which are cladded on one or both sides of a core material. In the outermost surface brazing filler metal layer, the number of Si particles having a circle equivalent diameter of 1.75 ?m or more is 10% or more of the number having a circle equivalent diameter of 0.8 ?m or more, as observed in the direction of the surface layer. The intermediate brazing filler metal layer contains less than 3000 per 10000 ?m2 of Si particles having a circle equivalent diameter of 0.25 ?m or more, as observed in a cross section of the brazing filler metal layer.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: January 25, 2022
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki Miyake
  • Publication number: 20210288989
    Abstract: According to one embodiment, an information processing device ranks one or more security measures technologies to be ranked. The information processing device includes processing circuitry configured to operate as an influence information obtaining unit, a requirements information obtaining unit and a ranking unit. The influence information obtaining unit obtains influence information indicating correspondence between the one or more security measures technologies and an influence on a system when each of the one or more security measures technologies is introduced into the system. The requirements information obtaining unit obtains requirements information indicating system requirements of the system. The ranking unit ranks the one or more security measures technologies based on a degree of satisfaction of the system requirements indicated in the requirements information, using the requirements information and the influence information.
    Type: Application
    Filed: October 26, 2020
    Publication date: September 16, 2021
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Jun KANAI, Yurie SHINKE, Hideyuki MIYAKE
  • Patent number: 11045911
    Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg—Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: June 29, 2021
    Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
  • Patent number: 11027373
    Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: June 8, 2021
    Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
  • Patent number: 11020824
    Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: June 1, 2021
    Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
  • Patent number: 10898963
    Abstract: Brazing sheet for flux-free brazing, wherein an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 4 to 12% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 1% or more and less than 4% Si and 0.1 to 5.0% Mg in mass %, are cladded on one side or both sides of a core material, and wherein aluminum members are joined to each other without using flux in a non-oxidizing gas atmosphere under normal pressure with an oxygen concentration of 300 ppm or less, using the brazing sheets.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: January 26, 2021
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki Miyake
  • Publication number: 20210001436
    Abstract: An aluminum alloy clad material having four layers includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material which clads the other surface thereof on one surface of the sacrificial material on an opposite side to the core material, the brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance, and satisfying (Bi+Mg)×Sr?0.1, Mg—Bi-based compounds contained in the brazing material with a diameter of 0.1-5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, and the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.1% to 0.7%, and a balance consisting of Al and inevitable impurities.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
  • Publication number: 20210001434
    Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
  • Publication number: 20210001437
    Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg-Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg-Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
  • Publication number: 20210001435
    Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATION
    Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki Teramoto, Taketoshi Toyama
  • Publication number: 20200086428
    Abstract: A brazing sheet for flux-free brazing has an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 2 to 13% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 4 to 13% Si and 0.1 to 5.0% Mg in mass %, which are cladded on one or both sides of a core material. In the outermost surface brazing filler metal layer, the number of Si particles having a circle equivalent diameter of 1.75 ?m or more is 10% or more of the number having a circle equivalent diameter of 0.8 ?m or more, as observed in the direction of the surface layer. The intermediate brazing filler metal layer contains less than 3000 per 10000 ?m2 of Si particles having a circle equivalent diameter of 0.25 ?m or more, as observed in a cross section of the brazing filler metal layer.
    Type: Application
    Filed: October 12, 2017
    Publication date: March 19, 2020
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki MIYAKE
  • Publication number: 20190337074
    Abstract: Brazing sheet for flux-free brazing, wherein an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 4 to 12% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 1% or more and less than 4% Si and 0.1 to 5.0% Mg in mass %, are cladded on one side or both sides of a core material, and wherein aluminum members are joined to each other without using flux in a non-oxidizing gas atmosphere under normal pressure with an oxygen concentration of 300 ppm or less, using the brazing sheets.
    Type: Application
    Filed: June 5, 2017
    Publication date: November 7, 2019
    Applicant: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki MIYAKE