Patents by Inventor Hirokazu Miyagawa

Hirokazu Miyagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10041154
    Abstract: An aluminum alloy sheet includes an aluminum alloy substrate having a composition containing, by mass percentage, 3.0 to 4.0% of magnesium, 0.2 to 0.4% of manganese, 0.1 to 0.5% of iron, not less than 0.03% but less than 0.10% of copper, and less than 0.20% of silicon, with the remainder being aluminum and unavoidable impurities. A peak concentration of a copper concentration distribution in a thickness direction in a region at a depth of 15 nm to 200 nm from the surface of the aluminum alloy substrate is equal to or more than 0.15%, and the aluminum alloy substrate has a recrystallized structure with an average grain size of 15 ?m or less.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 7, 2018
    Assignees: NIPPON LIGHT METAL COMPANY, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Tomoyuki Hirayama, Pizhi Zhao, Takeshi Handa, Toshiya Anami, Yusuke Nagaishi, Koji Itakura, Hirokazu Miyagawa, Tsutomu Hattori, Shigenori Yoshizawa, Akio Yoshizawa
  • Publication number: 20140166162
    Abstract: An aluminum alloy sheet includes an aluminum alloy substrate having a composition containing, by mass percentage, 3.0 to 4.0% of magnesium, 0.2 to 0.4% of manganese, 0.1 to 0.5% of iron, not less than 0.03% but less than 0.10% of copper, and less than 0.20% of silicon, with the remainder being aluminum and unavoidable impurities. A peak concentration of a copper concentration distribution in a thickness direction in a region at a depth of 15 nm to 200 nm from the surface of the aluminum alloy substrate is equal to or more than 0.15%, and the aluminum alloy substrate has a recrystallized structure with an average grain size of 15 ?m or less.
    Type: Application
    Filed: July 10, 2012
    Publication date: June 19, 2014
    Inventors: Tomoyuki Hirayama, Pizhi Zhao, Takeshi Handa, Toshiya Anami, Yusuke Nagaishi, Koji Itakura, Hirokazu Miyagawa, Tsutomu Hattori, Shigenori Yoshizawa, Akio Yoshizawa
  • Patent number: 7450921
    Abstract: The invention provides a communication semiconductor integrated circuit (RF IC) that, when a transmission oscillator is incorporated into a semiconductor chip, secures the oscillation operation over a wide frequency range, prevents a deterioration of a transmission spectrum, and thereby enhances the accuracy of an oscillation frequency. The integrated circuit corrects a dispersion of the KV characteristic of the transmission oscillator by calibrating a current Icp of the charge pump inside the phase control loop. More in concrete, the integrated circuit measures a KV value Kv of the transmission oscillator, and calibrates the current Icp of the charge pump so that Kv·Icp falls into a predetermined value.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: November 11, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Satoshi Arayashiki, Hirotaka Oosawa, Noriyuki Kurakami, Akira Okasaka, Yasuyuki Kimura, Toshiya Uozumi, Hirokazu Miyagawa, Satoshi Tanaka
  • Publication number: 20070111675
    Abstract: The invention provides a communication semiconductor integrated circuit (RF IC) that, when a transmission oscillator is incorporated into a semiconductor chip, secures the oscillation operation over a wide frequency range, prevents a deterioration of a transmission spectrum, and thereby enhances the accuracy of an oscillation frequency. The integrated circuit corrects a dispersion of the KV characteristic of the transmission oscillator by calibrating a current Icp of the charge pump inside the phase control loop. More in concrete, the integrated circuit measures a KV value Kv of the transmission oscillator, and calibrates the current Icp of the charge pump so that Kv·Icp falls into a predetermined value.
    Type: Application
    Filed: January 11, 2007
    Publication date: May 17, 2007
    Inventors: Satoshi Arayashiki, Hirotaka Oosawa, Noriyuki Kurakami, Akira Okasaka, Yasuyuki Kimura, Toshiya Uozumi, Hirokazu Miyagawa, Satoshi Tanaka
  • Patent number: 7187911
    Abstract: The invention provides a communication semiconductor integrated circuit (RF IC) that, when a transmission oscillator is incorporated into a semiconductor chip, secures the oscillation operation over a wide frequency range, prevents a deterioration of a transmission spectrum, and thereby enhances the accuracy of an oscillation frequency. The integrated circuit corrects a dispersion of the KV characteristic of the transmission oscillator by calibrating a current Icp of the charge pump inside the phase control loop. More in concrete, the integrated circuit measures a KV value Kv of the transmission oscillator, and calibrates the current Icp of the charge pump so that Kv·Icp falls into a predetermined value.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: March 6, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Satoshi Arayashiki, Hirotaka Oosawa, Noriyuki Kurakami, Akira Okasaka, Yasuyuki Kimura, Toshiya Uozumi, Hirokazu Miyagawa, Satoshi Tanaka
  • Patent number: 7012470
    Abstract: The present invention provides a communication semiconductor integrated circuit wherein a first control voltage for a voltage-controlled oscillator circuit is controlled based on a feedback signal sent from a PLL loop to generate a carrier frequency signal used as a carrier, and under the generation of the carrier frequency signal, a second control voltage for the voltage-controlled oscillator circuit is controlled based on the output of a DA converter circuit for DA-converting a code generated based on transmit data to thereby frequency-modulate an oscillation signal. The communication semiconductor integrated circuit is provided with a frequency adjustment/control circuit which measures the frequency of an oscillation output of the voltage-controlled oscillator circuit and adjusts a reference current value of the DA converter circuit according to the difference between the measured value and a target value to thereby correct the frequency.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: March 14, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Jun Suzuki, Hirokazu Miyagawa, Yoshiyuki Ezumi
  • Publication number: 20050059372
    Abstract: The invention provides a communication semiconductor integrated circuit (RF IC) that, when a transmission oscillator is incorporated into a semiconductor chip, secures the oscillation operation over a wide frequency range, prevents a deterioration of a transmission spectrum, and thereby enhances the accuracy of an oscillation frequency. The integrated circuit corrects a dispersion of the KV characteristic of the transmission oscillator by calibrating a current Icp of the charge pump inside the phase control loop. More in concrete, the integrated circuit measures a KV value Kv of the transmission oscillator, and calibrates the current Icp of the charge pump so that Kv·Icp falls into a predetermined value.
    Type: Application
    Filed: June 8, 2004
    Publication date: March 17, 2005
    Inventors: Satoshi Arayashiki, Hirotaka Oosawa, Noriyuki Kurakami, Akira Okasaka, Yasuyuki Kimura, Toshiya Uozumi, Hirokazu Miyagawa, Satoshi Tanaka
  • Publication number: 20040189403
    Abstract: The present invention provides a communication semiconductor integrated circuit wherein a first control voltage for a voltage-controlled oscillator circuit is controlled based on a feedback signal sent from a PLL loop to generate a carrier frequency signal used as a carrier, and under the generation of the carrier frequency signal, a second control voltage for the voltage-controlled oscillator circuit is controlled based on the output of a DA converter circuit for DA-converting a code generated based on transmit data to thereby frequency-modulate an oscillation signal. The communication semiconductor integrated circuit is provided with a frequency adjustment/control circuit which measures the frequency of an oscillation output of the voltage-controlled oscillator circuit and adjusts a reference current value of the DA converter circuit according to the difference between the measured value and a target value to thereby correct the frequency.
    Type: Application
    Filed: March 24, 2004
    Publication date: September 30, 2004
    Inventors: Jun Suzuki, Hirokazu Miyagawa, Yoshiyuki Ezumi
  • Patent number: 6731101
    Abstract: In accomplishing an LC-oscillation VCO circuit which is immune to frequency deviation and a frequency-hopping radio communication apparatus using the VCO circuit, a modulation semiconductor integrated circuit device is designed to control the LC-oscillation VCO directly with data to be transmitted thereby implementing the modulation and switch the carrier frequency for frequency hopping. The integrated circuit device includes a current adjusting circuit which varies the current value of a D/A conversion circuit for producing a control voltage of VCO in accordance with the carrier frequency so that the variation of a modulation control voltage of VCO has a characteristic that is opposite to the characteristic of modulation frequency deviation, thereby nullifying the modulation frequency deviation of VCO.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: May 4, 2004
    Assignee: Renasas Technology Corp.
    Inventors: Hirokazu Miyagawa, Katsumi Yamamoto, Tatsuji Matsuura, Masaru Kokubo
  • Patent number: 6677788
    Abstract: The present invention is directed to reduce fluctuations in modulation frequency of a VCO caused by a temperature change in a semiconductor integrated circuit for use in a radio communication system of a frequency hopping method performing modulation by controlling the VCO of an LC oscillation type in accordance with transmission data in an open loop by using the VCO. In a semiconductor integrated circuit of a frequency hopping method performing modulation by directly controlling an LC oscillation type VCO on the basis of transmission data and transmitting data while switching a carrier frequency, a temperature characteristic correcting circuit is provided which give a negative temperature characteristic to a reference current value of a circuit (such as a DA converter) for generating a control voltage of the VCO so that a modulation-side control input voltage having a positive temperature characteristic and controlling the VCO comes to have a negative temperature characteristic.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 13, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Hirokazu Miyagawa, Katsumi Yamamoto, Tatsuji Matsuura, Katsumi Osaki
  • Publication number: 20030076139
    Abstract: The present invention is directed to reduce fluctuations in modulation frequency of a VCO caused by a temperature change in a semiconductor integrated circuit for use in a radio communication system of a frequency hopping method performing modulation by controlling the VCO of an LC oscillation type in accordance with transmission data in an open loop by using the VCO. In a semiconductor integrated circuit of a frequency hopping method performing modulation by directly controlling an LC oscillation type VCO on the basis of transmission data and transmitting data while switching a carrier frequency, a temperature characteristic correcting circuit is provided which give a negative temperature characteristic to a reference current value of a circuit (such as a DA converter) for generating a control voltage of the VCO so that a modulation-side control input voltage having a positive temperature characteristic and controlling the VCO comes to have a negative temperature characteristic.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 24, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Hirokazu Miyagawa, Katsumi Yamamoto, Tatsuji Matsuura, Katsumi Osaki
  • Publication number: 20030048099
    Abstract: In accomplishing an LC-oscillation VCO circuit which is immune to frequency deviation and a frequency-hopping radio communication apparatus using the VCO circuit, a modulation semiconductor integrated circuit device is designed to control the LC-oscillation VCO directly with data to be transmitted thereby implementing the modulation and switch the carrier frequency for frequency hopping. The integrated circuit device includes a current adjusting circuit which varies the current value of a D/A conversion circuit for producing a control voltage of VCO in accordance with the carrier frequency so that the variation of a modulation control voltage of VCO has a characteristic that is opposite to the characteristic of modulation frequency deviation, thereby nullifying the modulation frequency deviation of VCO.
    Type: Application
    Filed: March 4, 2002
    Publication date: March 13, 2003
    Inventors: Hirokazu Miyagawa, Katsumi Yamamoto, Tatsuji Matsuura, Masaru Kokubo
  • Patent number: 5948292
    Abstract: The laser machining apparatus according to the present invention holds a plate-formed work W giving tension thereto, and comprises a driver base/a work base driving the work in the axial direction, a converging lens for a laser beam L, a laser machining head moving in a direction in which the laser beam L is focused onto the work, an upper work holding member having a nozzle for laser beam irradiation integrated thereto, a bellows for relatively and displaceably connecting the laser machining head and the upper work holding member in the focusing direction, and a lower fixed base/a highly slippery plate located and fixed at a position corresponding to a center of the nozzle, and the work is held between the upper work holding member and the lower fixed base/a highly slippery plate at a position adjacent to the laser beam machining position.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: September 7, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hisao Tanaka, Akaru Usui, Shinji Sato, Hirokazu Miyagawa
  • Patent number: 4735523
    Abstract: A vibratory compaction working machine has a lower travel structure and an upper swing structure mounted on the lower travel structure. The upper swing structure has a boom mounted thereon for pivotal movement by a first hydraulic cylinder, an arm mounted on the boom at its forward end for pivotal movement by a second hydraulic cylinder, and vibratory plate compactor mounted on the arm at its forward end for pivotal movement by a third hydraulic cylinder. The arm is in the form of an extension arm having a first arm element and a second arm element mounted for linear movement relative to the first arm element by a fourth hydraulic cylinder. The first arm element is attached at the forward end of the boom for pivotal movement by the second hydraulic cylinder, and the second arm element has the vibratory plate compactor attached to the forward end thereof for pivotal movement by the third hydraulic cylinder.
    Type: Grant
    Filed: June 25, 1986
    Date of Patent: April 5, 1988
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Yasuaki Ishikawa, Hirokazu Miyagawa, Shiro Murakami, Hiroshi Koma, Yutaka Ikeda, Yoshifumi Itou